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We propose a mechanism for the initiation of cell motility that is based on myosin-induced contraction

and does not require actin polymerization. The translocation of a cell is induced by symmetry breaking of

the motor-driven flow, and the ensuing asymmetry gives rise to a steady motion of the center of mass of a

cell. The predictions of the model are consistent with observations on keratocytes.
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Structural rearrangements allowing cells to crawl on
substrates (e.g., keratocytes or fibroblasts) involve spatial
and temporal self-organization at the level of cytoskele-
ton—a dynamic protein network inside the cell combining
the functions of support and driving [1]. To reach motile
configuration, a cell must first polarize, which implies loss
of circular symmetry, decentering of the nucleus, and
regroupment of myosin motors at the trailing edge. The
fact that such symmetry-breaking internal instabilities,
leading to steady self-propulsion, have been observed
even in nucleus-free fragments [2] suggests that the under-
lying mechanism has a relatively simple origin, and several
models emphasizing different physics have been recently
proposed in the literature [3–7].

The three major processes responsible for cell motility
are protrusion, contraction, and adhesion [1]. They are all
induced by ATP hydrolysis: protrusion is caused by poly-
merization and depolymerization of actin filaments, con-
traction results from the activity of myosin motors, and
adhesion is mediated by engagement and disengagement
of transmembrane receptors. For cells, crawling on rigid
substrates, the ATP dependence of adhesion can be
neglected and the associated interaction is often treated as
passive [8–10]. Both myosin contraction and actin
polymerization contribute to cell migration as active,
ATP-driven mechanisms; however, their roles appear to be
complementary [10]. In particular, contraction is believed
to be solely responsible for cell polarization [2].
Furthermore, experimental studies of epithelial tumors
[11] strongly suggest that at least some cells can be driven
exclusively by contraction.

To explain these experiments, we propose a simple
model showing the possibility of spontaneous polarization
and self-propulsion without ATP-driven protrusion, which
is a crucial component of many recent models [6,12]. We
argue that the positive feedback mechanism, giving rise to
the symmetry-breaking instability of a nonmotile configu-
ration and ensuring directional motility of a self-propelling
cell, is similar to an uphill diffusion. It is driven by advec-
tion of molecular motors that in turn mechanically propel
the actin network by inflicting contraction and creating an
autocatalytic effect [13]. The coupling leads to build up of

local motor concentration, which is limited by elasticity,
friction, and diffusion, resisting the runaway and providing
the negative feedback.
The idea that contraction causes flow which in turn

carries the regulators of contraction is incorporated into
the hydrodynamic description of active fluids [14]. In
configurations with fixed boundaries, it has been shown
to describe instabilities leading to nontrivial symmetric
patterns of stress activator [5]. In Ref. [7], similar ideas
were used in the description of nonlamellipodial motility
associatedwith angular cortex flows. Heuristicmodels of the
Keller-Segel type [15] describing polarization instability in
static cells were proposed in Refs. [16,17]. In all these
papers, however, the effect of myosin-induced contraction
was either obscured by the account of other symmetry-
breaking mechanisms, in particular, actin treadmilling,
or the focus was on generation of internal flow
rather than on the translocation of the center of mass of a
cell. There also exists considerable literature addressing
spontaneous motility driven directly by protrusion [3] and
Turing patterning [18] or studying an interplay of multiple
mechanisms [19,20].
Recently, a model of contraction-induced motility rely-

ing on splay instability was proposed in Ref. [4]. This
mechanism is complementary to autotaxis studied in the
present Letter. Lately, the contraction-induced motility
initiation was attributed to an instability in a poro-elastic
active gel permeated by a solvent [21]. The implied mecha-
nism is conceptually close to autotaxis, but other physical
factors are involved as well.
To make the physics of contraction-dominated motility

fully transparent, we study in this Letter an analytically
tractable one-dimensional model that captures both the
symmetry breaking and the induced macroscopic motion
in the minimal setting. We show that an increase of motor
concentration beyond a threshold leads to a bifurcation
from a static symmetric regime to an asymmetric motile
regime describing a self-propelling cell. While several
static and dynamic steady regimes may be available for
the same value of parameters, we show that only the motile
solution localizing motors near the trailing edge of the cell
is stable, which is in agreement with observations [2].
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The model.—Consider the force balance equation for a
one-dimensional layer of an active gel in viscous contact
with a rigid background @x� ¼ �v, where �ðx; tÞ is the
stress, vðx; tÞ is the velocity of the acto-myosin network,
and � is the friction coefficient. Following Refs. [5,9,22],
we write � ¼ �@xvþ �c, where � is the bulk viscosity, c
is the concentration of motors, and �> 0 is the contractile
active stress (per motor). The function cðx; tÞ satisfies the
advection-diffusion equation @tcþ@xðcvÞ¼D@xxc, where
D is the diffusion coefficient.We assume that l�ðtÞ and lþðtÞ
are the unknown boundaries of the cell. We account for a
mean field-type linear elastic interaction due to membrane
or cortex [23] by using mechanical boundary condition
�ðl�ðtÞ; tÞ ¼ �kðL� L0Þ=L0, where LðtÞ ¼ lþðtÞ � l�ðtÞ
is the length of the cell, k is the effective elastic stiffness,
and L0 is the reference length. Since we neglect active
treadmilling, we can write the kinematic boundary condi-

tions in the form _l� ¼ vðl�Þ. We impose zero exterior flux
of motors @xcðl�ðtÞ; tÞ ¼ 0, which implies that the average

concentration c0 ¼ L�1
0

Rlþ
l� cðx; tÞdx is conserved.

If we now normalize length by L0, time by L2
0=D,

concentration by c0, and stress by k, we obtain a Keller-
Segel-type system [24]

�Z@xx�þ�¼Pc; @tcþK@xðc@x�Þ¼ @xxc; (1)

where the dimensionless constants areZ ¼ �=ð�L2
0Þ, com-

paring our two frictional mechanisms,K ¼ k=ð�DÞ, mea-
suring relative importance of diffusion, and P ¼ c0�=k,
giving the scale of contractile activity. If � is expressed
through the corresponding Green’s function, the resulting
nonlocal diffusion-advection problem is structurally simi-
lar to the one proposed in Ref. [16]; however, the effective
kernel is different. Conceptually, the proposed motility
mechanism is similar to chemotaxis [15] but in a purely
mechanical setting.

The dimensionless boundary conditions for Eq. (1) take
the form �ðl�ðtÞ; tÞ ¼ �ðLðtÞ � 1Þ, @xcðl�ðtÞ; tÞ ¼ 0, and
_l�ðtÞ ¼ K@x�ðl�ðtÞ; tÞ. They imply that the motion of the
center of the cell GðtÞ ¼ ðl�ðtÞ þ lþðtÞÞ=2 is governed by
the equation

_GðtÞ ¼ KP
2Z

Z lþðtÞ

l�ðtÞ
sinh½ðG� xÞ= ffiffiffiffi

Z
p �

sinh½L=ð2 ffiffiffiffi
Z

p Þ� cðx; tÞdx: (2)

If the concentration distribution is symmetric, then _G ¼ 0
and the cell cannot move, which is a simple analogue of
Purcell’s theorem [25] with spatial asymmetry required for
steady self-propulsion replacing temporal asymmetry of a
periodic stroke. From Eq. (2) we also infer that the maxi-
mal speed of the cell is equal toKP=ð2ZÞ. In dimensional
variables [5,9], this gives �L0c0=ð2�Þ ’ 10 �m=min ,
which is realistic [2].

Steadily advancing cells.—In a steady motility mode,
both stress and myosin concentration must depend only on
traveling wave coordinate y ¼ x� Vt where V is the

unknown cell velocity. We also have _l� ¼ V and LðtÞ ¼
L where L is the unknown length of the cell. Then system
Eq. (1) reduces to the single equation

�Zs00ðyÞþ sðyÞ�KðL�1Þ¼KP
expðsðyÞ�VyÞ

R
L
0 expðsðyÞ�VyÞdy;

(3)

where sðyÞ ¼ K½�ðyÞ þ ðL� 1Þ� is the unknown func-
tion. The presence of four boundary conditions sð0Þ ¼
sðLÞ ¼ 0 and s0ð0Þ ¼ s0ðLÞ ¼ V ensures that both parame-
ters V and L can be found along with sðyÞ. After Eq. (3) is
solved, the motor concentration profile can be recovered
from the relation cðyÞ ¼ expðsðyÞ � VyÞ½RL

0 expðsðyÞ �
VyÞdy��1. To simplify the description, we assume that
Z ¼ 1 [9], which means that the elastic and the viscous
scales are correlated. We are then left with two dimension-
less parameters K� 100 and P � 0:1 [7,9].
Initiation of motility.—Directional motion starts with an

instability of a static solution of Eq. (3). All such solutions
are necessarily symmetric and can be written in quadra-
tures [5]. In addition to regular static states, there are also

singular static states with zero length L̂0 ¼ 0 and sðyÞ ¼
lim�!0�fðy=�Þ, where fðuÞ ¼ ðKP=2Þuð1� uÞ and u 2
½0; 1�; moreover, for P > 1=4, those are the only static
configurations. Singular (measure valued) solutions of this
type have been encountered in several problems leading to
Eq. (3) from turbulence to gauge theory [26], and here they
describe the collapse of a cell under the action of unbal-
anced contractile stresses.
One can show that motile branches with V � 0 bifurcate

only from homogeneous static solutions with sðyÞ ¼ 0 and

L̂� ¼ ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4P

p
Þ=2: (4)

Notice that the ‘‘rest length’’ of static cell depends only on
the normalized global motor content P . Linearization
around these states produces the following linear problem
for the perturbation �sðzÞ

�s00 þ!2�s ¼ Aþ Bz; (5)

where z¼y=L, A¼�ð!2þL̂2Þ½ð2L̂�1Þ=ðL̂3ðL̂�1ÞÞ�L�
ð1=2ÞL̂�V�, B ¼ �L̂ð!2 þ L̂2Þ�V, and

! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KP L̂� L̂2

p
:

Equation (5) is supplemented with the four boundary con-

ditions �sð0Þ¼�sð1Þ¼0, �s0ð0Þ ¼ �s0ð1Þ ¼ L̂�V, allow-
ing one to find the perturbations of the cell length �L and
its speed �V (up to a common multiplier).
Equation (5) has nontrivial solutions if ! � 0 and

2L̂2ðcos!� 1Þ þ ð!2 þ L̂2Þ! sin! ¼ 0: (6)

Solutions of Eq. (6) split into two families. The first family
S1; S2; . . . with ! ¼ 2m�, where m is a positive integer,
corresponds to static configurations with �V ¼ 0. The
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second family D1; D2; . . . parametrized by the roots of the

equation tanð!=2Þ ¼ !=2ð1þ!2=L̂2Þ, corresponds to
motile solutions with �L ¼ 0=2. The locus of the bifurca-
tion points in the parameter plane (P , K) is shown in
Fig. 1. At a given value of K, a homogeneous static
configuration becomes unstable when the measure of
motor activity reaches the threshold P ¼ P 0, which

can be found from the equation !2 þ L̂2þðP 0Þ ¼
KP 0L̂þðP 0Þ, where !ðL̂þðP 0ÞÞ is the smallest positive
root of Eq. (6). Notice that at sufficiently small values of
K, when either diffusion or friction are too strong, neither
polarization nor motility are possible independent of the
level of motor activity.

Nonlinear regimes.—To follow bifurcated branches into
the nonlinear regime, we performed a numerical study of
Eq. (3). In Fig. 2, we see that a pitchfork bifurcation atD1�

gives rise to two motile branches reconnecting at D1��.
This bifurcation describes the initiation of motility at
P ¼ P 0. The choice of polarization is dictated by imper-
fections and the resulting motility pattern with motors
localizing at the trailing edge (see regimes 1 and 10 in
Figs. 2 and 3) is similar to the one observed in experiments
carried on keratocyte fragments [2].
Other bifurcation points give rise to either static or

motile solutions that always appear in pairs. In particular,
static bifurcation associated with S1 leads to two configu-
rations with motors concentrated in either the middle of the
cell or near the boundaries (see regimes 2 and 20 in Fig. 3).
Along the second motile branch D2, there is an additional
peak in the concentration profile compared to that of D1
(see regimes 3 and 30 in Fig. 3).
In Fig. 4, we illustrate a possibility of reentrant phe-

nomenon that is similar to the behavior reported in
Ref. [16] for a different but related system. In this regime,
the increase of the average concentration of motors first
polarizes the cell and initiates motility, but then, as the
concentration is further increased, the cell gets symme-
trized again in another static homogeneous configuration.
Flow of actin.—By solving Eq. (1), we obtain the con-

centration of myosin but not the actin density 	ðx; tÞ, which
decouples due to the assumption of infinite compressibility

FIG. 1 (color online). Locus of the bifurcation points in the
(K, P ) plane. Inset shows a zoom on the D1 branch around the
turning point at P ¼ 1=4. The bifurcation diagrams along two
sections K ¼ 100 and K ¼ 70 are shown in Figs. 2 and 4,
respectively.

FIG. 2. Bifurcation diagram at K ¼ 100 showing motile
branches connecting bifurcation points D1� and D1�� from
Fig. 1. Solid lines show stable solutions, and dotted lines corre-
spond to unstable solutions. Three graphs below show the internal
profiles at P ¼ 0:2 corresponding to branch 1 (solid) and branch
10 (dashed).

FIG. 3. Inhomogeneous solutions D1, S1, D2, S2 at P ¼
0:245. Even labels (1,3) correspond to asymmetric motile re-
gimes, and odd labels (2,4) correspond to static symmetric
regimes. Each static regime is represented by two solutions
with larger and smaller lengths, e.g., 2 and 20.

FIG. 4. Bifurcation diagram at K ¼ 70 illustrating the reen-
trant behavior; points D1� and D1�� are also shown in Fig. 2.
Solid lines show stable branches, and dotted lines correspond to
unstable branches.
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[9,20]. To recover themissing information, we have to solve
the mass balance equation for actin @t	þ@xð	vÞ¼0
where the velocity field is given by v ¼ K@x�. The struc-
ture of solution can be understood by studying the charac-
teristics 
ðsÞ of the equation for density [10]. For steady
cells moving with velocity V, we write in the cell’s refer-
ence frame d
ðsÞ=ds ¼ vð
ðsÞÞ� V. To ensure that a
characteristic passes through the given point (y, t), we
need to add the boundary condition 
ðtÞ ¼ y.

Notice that the points where vðyÞ ¼ V are sinks if
@yv < 0 and sources if @yv > 0 and it takes infinite time

for a characteristic to reach (or to escape from) such
singularities. This is clearly a shortcoming of the one-
dimensional approach, and to regularize the problem it is
natural to cut out small domains of size � around singular-
ities; see Fig. 5. We can then represent the ‘‘returning’’
flow, mimicking the three-dimensional circulation, by dis-
continuities and assume that a particle reaching the bound-
ary of the sink region following a smooth trajectory (path
AB in Fig. 5) instantly reappears on the boundary of the
source region (path B0A0 on Fig. 5).

Transients.—A numerical study of the initial value prob-
lem (1) shows that all nontrivial solutions (static and
motile) are unstable except for the branch bifurcating at

D1. Homogeneous solutions from the L̂þ family and all

singular static solutions from the L̂0 family are numerically
stable. In Figs. 2 and 4, stable traveling wave solutions of
Eq. (1) are shown with solid lines, and unstable solutions
are shown with dotted lines. Simulations also suggest that
as in Refs. [5,16], unstable multipeaked solutions are long
lived. This behavior is reminiscent of the classical spinodal
decomposition modeled by the Cahn-Hilliard equation
where the coarsening process gets critically slowed down
near multiple saddle points [27].

Limiting regimes.—In some special cases, our equations
can be simplified; however, the solutions become more
singular. Thus, in the hyperbolic limit K ! 1 (weak
diffusion), the number of bifurcation points grows to infin-
ity (see Fig. 1) and solutions become measure valued. As

an illustration, we show in Fig. 6 the concentration profile
for the first motile branch D1, which infinitely localizes at
the trailing edge as K ! 1.
In the inviscid limit Z ! 0, the system (1) reduces to

@tu ¼ @xðu@xuÞ, where u ¼ 1�KP c. This is a degener-
ate sign-indefinite porous flow equation exhibiting an
uphill diffusion when c > ðKP Þ�1.
To study a cell with a fixed length, we need to assume that

k ! 1. This can be interpreted as the double limitK ! 1
and P ! 0. It is then convenient to restore Z and use as a
second dimensionless parameter the product KP . In this
limit, the length of the cell is setL ! 1; however, the cell can
still movewithV � 0. The analysis, similar to the one in the
general case, shows that at a sufficiently large value ofKP
the homogeneous solutionwithV ¼ 0 becomes unstable. As
a result, themacroscopically ‘‘rigid’’ cell internally polarizes
and starts to move. Therefore, if a cell with fixed length is
allowed to move, all symmetric inhomogeneous configura-
tions with V ¼ 0 studied in Ref. [5] are unstable.
Conclusions.—We proposed a prototypical model of a

crawling cell showing the possibility of spontaneous po-
larization and steady self-propulsion in the conditions
when contraction is the only active process. This model
complements the existing theories of polarization, which
place emphasis on the ATP-driven polymerization of actin.
Mathematically, the problem reduces to a Keller-Segel-type
system with nonlocality due to mechanical rather than
chemical feedback. The peculiar nature of the resulting
problem is the presence of free boundaries that destabilize
symmetric patterns characteristic for active gels in fixed
domains. We have shown that the spontaneous symmetry
breaking takes place at a critical value of the average con-
centration of motors and that among the variety of motile
regimes describing self-propelling active bodies with inter-
nal segmentation, only the simplest polarized configurations
observed in experiments are stable.
The authors thank J. F. Joanny, K. Kruse, and A.

Mogilner for helpful comments. The work of P. R. was
supported by the Monge Doctoral Fellowship from Ecole
Polytechnique.

*pierre.recho@curie.fr
[1] B. Alberts et al., Molecular Biology of the Cell (Garland

Science, New York, 2002); D. Bray, Cell Movements

FIG. 5 (color online). Trajectory of an individual actin particle
undergoing passive treadmilling for a typical solution on the D1
motile branch with V > 0. Shaded regions are excluded domains
of singular behavior.

FIG. 6. Internal configurations for the motile branch D1 with
V > 0 at P ¼ 0:245 and increasing K value.

PRL 111, 108102 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

6 SEPTEMBER 2013

108102-4



(Garland Science, New York, 2000); A. Mogilner, J.
Allard, and R. Wollman, Science 336, 175 (2012).

[2] A. B. Verkhovsky, T.M. Svitkina, and G.G. Borisy, Curr.
Biol. 9, 11 (1999); G. Csucs, K. Quirin, and G. Danuser,
Cell Motil. Cytoskeleton 64, 856 (2007); M. L. Lombardi,
D. A. Knecht, M. Dembo, and J. Lee, J. Cell Sci. 120,
1624 (2007); P. T. Yam, C. A. Wilson, L. Ji, B. Hebert,
E. L. Barnhart, N.A. Dye, P.W. Wiseman, G. Danuser, and
J. A. Theriot, J. Cell Biol. 178, 1207 (2007); M. Vicente-
Manzanares, X. Ma, R. S. Adelstein, and A. R. Horwitz,
Nat. Rev. Mol. Cell Biol. 10, 778 (2009); R. Poincloux, O.
Collin, F. Lizarraga, M. Romao, M. Debray, M. Piel, and
P. ChavrierProc. Natl. Acad. Sci. U.S.A. 108, 1943 (2011).

[3] A. C. Callan-Jones, J. F. Joanny, and J. Prost, Phys. Rev.
Lett. 100, 258106 (2008); K. Doubrovinski and K. Kruse,
Phys. Rev. Lett. 107, 258103 (2011).

[4] E. Tjhung, D. Marenduzzo, and M. E. Cates, Proc. Natl.
Acad. Sci. U.S.A. 109, 12381 (2012).

[5] J. S. Bois, F. Julicher, and S.W. Grill, Phys. Rev. Lett. 106,
028103 (2011); J. Howard, S.W. Grill, and J. S. Bois, Nat.
Rev. Mol. Cell Biol. 12, 392 (2011).

[6] F. Ziebert and I. S. Aranson, PLoS One 8, e64511 (2013).
[7] R. J. Hawkins, O. Benichou, M. Piel, and R. Voituriez,

Phys. Rev. E 80, 040903(R) (2009); R. J. Hawkins, R.
Poincloux, O. Bénichou, M. Piel, P. Chavrier, and R.
Voituriez, Biophys. J. 101, 1041 (2011).

[8] K. Tawada and K. Sekimoto, J. Theor. Biol. 150, 193 (1991).
[9] F. Julicher, K. Kruse, J. Prost, and J. Joanny, Phys. Rep.

449, 3 (2007).
[10] P. Recho and L. Truskinovsky, Phys. Rev. E 87, 022720

(2013).
[11] H. Keller, A.D. Zadeh, and P. Eggli, Cell Motil.

Cytoskeleton 53, 189 (2002).
[12] C. Blanch-Mercader and J. Casademunt, Phys. Rev. Lett.

110, 078102 (2013).
[13] M. Mayer, M. Depken, J. S. Bois, F. Jülicher, and S.W.
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