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We study the effect of confinement on glassy liquids using random first order transition theory as a

framework. We show that the characteristic length scale above which confinement effects become

negligible is related to the point-to-set length scale introduced to measure the spatial extent of amorphous

order in supercooled liquids. By confining below this characteristic size, the system becomes a glass.

Eventually, for very small sizes, the effect of the boundary is so strong that any collective glassy behavior

is wiped out. We clarify similarities and differences between the physical behaviors induced by

confinement and by pinning particles outside a spherical cavity (the protocol introduced to measure

the point-to-set length). Finally, we discuss possible numerical and experimental tests of our predictions.
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The search for a growing static length accompanying the
slowing down of the dynamics of supercooled liquids is a
leitmotiv and a key open issue in the study of the glass
transition. The super-Arrhenius behavior of the relaxation
time is indeed a hint that such a length exists: a growing
energy barrier should be related to an increasing coopera-
tivity, as first conjectured a long time ago by Adam and
Gibbs and then firmly advocated within random first order
transition (RFOT) theory [1,2]. Recently, this intuition was
put on a rigorous basis by Montanari and Semerjian [3].
Their result was obtained using the cooperative length
scale, ‘PS, that measures the spatial extent of amorphous
order and that was originally introduced in Ref. [4] to
characterize the spatial structure of the so-called mosaic
state envisioned for supercooled liquids by the RFOT
theory [2]. The definition of ‘PS called the point-to-set
(PS) length is the following: take a typical equilibrium
configuration, freeze the positions of all particles outside
a sphere centered around a given point, and study how the
thermodynamics of the remaining particles inside the
sphere is influenced by this amorphous boundary condition
[4,5]; ‘PS is the smallest radius of the sphere at which the
boundary has no longer any effect on the configuration at
the center. As its definition above makes clear, ‘PS is quite
difficult to measure. It can be obtained by numerical
simulations but for rather high temperatures only [6–10]
because of equilibration problems [9,11]. Therefore, one
can only access its first increase in a regimewhere it should
not play an important role in determining the dynamics;
only in the deeply supercooled activated regime should ‘PS
be directly linked to the growth of the relaxation time
[12,13]. The way out of this impasse would be to measure
such a length in experiments on molecular liquids close to
the glass transition. However, no experimental way for
doing that has been devised so far.

Actually, there might be an alternative and simpler
way to measure a growing static length in supercooled
liquids: studying the role of spatial confinement on glassy

dynamics [1,2]. Indeed, if the glass transition is related to
the growth of a static length, the study of confined liquids
may unveil the existence of such a length by measuring the
smallest confinement linear size, ‘C, such that bulk behav-
ior is recovered. As for finite size scaling in critical phe-
nomena, the idea is to use the possibility of varying the
system size as an investigation tool. Unfortunately, the
interaction between the boundary and the confined fluid
and the possible change of density inside the confining
region lead to nonuniversal behavior even for the simpler
case of the melting-freezing transition [14]. In the case of
confined supercooled liquids, the glass transition tempera-
ture has been found to either increase or decrease as a
function of the confinement length scale depending on the
experimental system [14,15]; no clear indication of a
growing static length could be found. It was not under-
stood, however, whether this is due to an intrinsic inability
of confinement to probe the growing static length
characterizing the glass transition or just to the practical
complications cited above. Results obtained in numerical
simulations and for colloidal systems point toward the
latter possibility [16,17]. Theoretically, the distinction
between ‘C and ‘PS is subtle and boils down to the differ-
ence in the boundary conditions used to study the behavior
of a confined fluid. For ‘PS, the boundary (henceforth
called amorphous and denoted AB) is obtained by freezing
particles from an equilibrium configuration at temperature
T—the hunch is that this protocol quenches very subtle
correlations and, hence, the pinned particles at the bound-
ary act as a pinning field that forces the configuration
inside the cavity to be in a given amorphous state for
‘ < ‘PS. For ‘C, instead, the boundary (henceforth called
random and denoted RB) is essentially formed by a rough
wall that only induces trivial short-range correlations due
to steric constraints. In this Letter, we clarify similarities
and differences in the physical behaviors of confined
liquids with random and amorphous boundary conditions
using RFOT theory as a framework [12,13]. We have found
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that ‘C and ‘PS increase in a similar fashion (the former
being smaller than the latter) but that the corresponding
confined systems behave very differently below ‘C and ‘PS.
Our results, which are also relevant for recent studies on
pinning particles from equilibrium and from random con-
figurations [9,18–28], demonstrate that confinement is
indeed a way to probe the length scale associated with
the spatial extent of amorphous order in supercooled
liquids.

Let us start with some heuristic arguments that will be
backed later by analytical computations. RFOT theory is
based on the competition between the huge number of
possible amorphous states in which a liquid can freeze,
measured by the configurational entropy density scðTÞ, and
the tendency to sample states with low free energy [12,13].
By pinning all particles outside a spherical cavity, the
number of possible states in which the particles inside
the cavity can arrange is diminished. Correspondingly,
the total configurational entropy inside the cavity decreases
and reads at leading order in ‘: scð4�=3Þ‘3 � 4�YPS‘

�PS

[29]. The last term is a surface contribution, hence,
�PS � 2 (the 4� is included in reference to the simplest
case �PS ¼ 2). It is thought to originate from the boundary
free-energy mismatch between the subset of states which
are incompatible at the boundary with the initial configu-
ration used to pin particles. By decreasing ‘, fewer and
fewer states remain compatible. For ‘ < ‘PS, only the one
corresponding to the initial configuration survives. The
point-to-set length is therefore directly related to the con-

figurational entropy and reads ‘PS ¼ ð3YPS=scÞ1=ð3��PSÞ. It
represents, within RFOT, the typical linear size over which
the system is amorphously ordered—‘‘the mosaic’s tile
length.’’ The confinement setup is very similar to the
previous one but with the crucial difference that the bound-
ary is featureless, i.e., it equally disfavors all states. The
total configurational entropy is expected to decrease also in
this case as scð4�=3Þ‘3 � 4�YC‘

�C (as found for the one-
dimensional Kac random energy model in Ref. [30]). It is
reasonable to assume, and it is in agreement with our
analytical findings, that �C ¼ �PS and YC & YPS; i.e., con-
finement leads to a decrease of configurational entropy
similar to the AB case. We define the confinement
length as the value of ‘ at which the configurational
entropy inside the cavity vanishes, which leads to the result

‘C ¼ ð3YC=scÞ1=ð3��CÞ. In the AB case, and for ‘ < ‘PS, the
system is frozen in the only state compatible with the
boundary condition; whereas instead in the RB case, for
‘ < ‘C, it can sample all the lowest free energy states
available, whose free energy difference is Oð1Þ. This
regime is exactly the analog of the one expected below
TK, the so-called one step replica symmetry breaking
phase. Thus, decreasing the confinement length is tanta-
mount to lowering the temperature for bulk systems with
the important difference that, since the system is finite,
only a crossover and not a true phase transition happens at

‘ ¼ ‘C. This analogy suggests that a mode-coupling cross-
over should also take place at a length ‘MCT (> ‘C), as
indeed found in microscopic computations in Ref. [21].
Our previous arguments suggest that although ‘C < ‘PS,
these length scales are proportional to each other and
increase similarly when the configurational entropy dimin-
ishes: if scðTÞ / T � TK for T ! TK then they both di-

verge as 1=ðT � TKÞ1=ð3��Þ. We expect that by decreasing ‘
the relaxation time increases, first because of mode-
coupling effects and then because of the RFOT-Adam-
Gibbs mechanism [12,13] that relates the decrease of sc
to the increase of the relaxation time. When ‘ becomes of
the order of ‘PS or ‘C, in the AB and RB cases, respec-
tively, the relaxation time scale should start decreasing—
faster in the AB case because the system has just to sample
one given state [11], slower in the RB case where collective
rearrangements corresponding to interstate dynamics still
go on but involve a smaller number of particles (see the
Supplemental Material [31] and Ref. [32]). Collective
glassy behavior is expected to disappear at very high
temperature or very small ‘. A sketch of the resulting
phase diagram, which actually corresponds to the analyti-
cal solution that we shall present later, is shown in Fig. 1.
We now present our analytical investigation of confine-

ment with RB conditions; the AB case was treated in
Ref. [33]. Our starting point is the replica free energy
functional F½qabðxÞ� already used several times to analyze
the glass transition [12]; the spatially varying field qabðxÞ
is defined for a < b, where a and b denote the replica
indices which run over n different values (with n ! 0).
Note that the random boundary condition acts as an exter-
nal quenched disorder, this is why one ends up with the
n ! 0 analytic continuation of the replicated functional
even for a system that does not contain any quenched
disorder. In previous analyses, two forms have been used:
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FIG. 1 (color online). Confinement ‘‘phase diagram’’: the con-
tinuous line (red) denotes a finite size glass transition at ‘C, the
dashed line on the left (black) is the mode-coupling theory
(MCT) crossover at ‘MCT, and the dotted one on the right
(blue) indicates a continuous glass transition at ‘0.
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a Ginzburg-Landau one [34] and another obtained by an
analysis based on the Kac limit [35]. We focus on the latter
because it has the advantage of corresponding to a well-
defined model—a disordered p-spin Kac system (see [35]
and the Supplemental Material for details [31]). Since the
Ginzburg-Landau action can be recovered making a gra-
dient and a field expansion, our results are not restricted to
this specific choice of F½qabðxÞ�. For the p-spin Kac model
the random boundary condition can be explicitly taken into
account by requiring that all the spins outside the cavity are
equal to a random configuration, i.e., sampled from the
infinite temperature Boltzmann measure. One can also
show that taking instead a configuration with, e.g., all spins
up is statistically equivalent. This is natural because from
the point of view of an amorphous state, a random bound-
ary condition or a nondisordered one are statistically equal.
The analog for particle systems of this result is that random
boundary conditions (obtained from high T configurations)
or rough walls should all be equivalent as far as collective
glassy effects are concerned. From the replica point of
view, the random boundary conditions lead to the con-
straint qabðxÞ ¼ 18 a; b outside the cavity. As in previous
studies, we focus on two Ansätze for the form of qabðxÞ:
one is replica symmetric (RS) qabðxÞ ¼ q0 8 a; b, and the
other is one step replica symmetry breaking (1RSB); i.e.,
replica are collected in n=m groups and qabðxÞ ¼ q1ðxÞ for
replica inside the same group and qabðxÞ ¼ q0ðxÞ other-
wise. The physical meaning of these solutions are the usual
ones: when only the RS solution is present, the liquid is
simple and not glassy. When the 1RSB solution at m ¼ 1
appears, an exponential number of metastable states
emerges (this is related to the mode-coupling transition).
From the derivative of F½qabðxÞ� in m ¼ 1 [36], one can
obtain the configurational entropy which vanishes
when the 1RSB solution with m< 1 starts to extremize
F½qabðxÞ�, i.e., the system is in the glass phase. The form
of F½qabðxÞ� within the 1RSB Ansatz (the RS can be
recovered imposing q0 ¼ q1) reads F½qabðxÞ� ¼R
d3xL1RSBðq0ðxÞ; q1ðxÞ; mÞ where

L1RSB ¼ ð1�mÞ�
2

2
fðq1 � c Þ þm

�2

2
fðq0 � c Þ

� 1

2

q0
1� ð1�mÞq1 �mq0

�m� 1

2m
logð1� q1Þ

� 1

2m
log½1� ð1�mÞq1 �mq0�;

and c ðxÞ is a normalized three-dimensional Gaussian, and
fðqÞ is a function defined as fðqÞ � qp=2 with p ¼ 3 (we
considered the p ¼ 3 Kac-spin model). The notation
q � c ðxÞ indicates the convolution

R
d3yc ðy� xÞqðxÞ.

By extremizing F½qabðxÞ� with respect to q0, q1, and m,
assuming spherical symmetry around the origin and using
the boundary conditions q0 ¼ q1 ¼ 1 outside the cavity,
one obtains the inhomogeneous equations determining the
RS and 1RSB solutions (more details in Ref. [33] and the

Supplemental Material [31]). We now present the results
that lead to the phase diagram reported in Fig. 1. At very
high temperature we only find the RS solution for any
value of ‘, i.e., confinement does not induce any glassy
behavior. Below a certain temperature denoted Th in Fig. 1,
and above TMCT, we find that the cavity radius ‘ plays a
role similar to the temperature. By decreasing ‘, first the
system undergoes a MCT transition at ‘ ¼ ‘MCT, as also
found in Ref. [21], and then the configurational entropy
vanishes at ‘ ¼ ‘C. In Fig. 1, we have called ‘‘simple
liquid’’ the region where only the RS solution is present,
‘‘activated dynamics,’’ the one characterized by a finite
configurational entropy, where the dynamics is activated
and (within RFOT) follows an Adam-Gibbs law, and
‘‘glass’’ the one where replica symmetry is broken and
the ideal glass phase sets in. Figure 1 shows that the glass
transition line becomes continuous and bends downwards.
By confining the system below ‘C, the system eventually
exits from the glassy phase for a radius equal to ‘0. In this
regime, the effect of the boundary is overwhelming and
destroys the nontrivial free energy landscape. At ‘ ¼ ‘0,
q0 and q1 approach one another continuously while m
remains less than 1. These results provide a microscopic
derivation of the heuristic arguments put forward previ-
ously and allow us to determine �C ¼ 2 and YC, which is
temperature dependent: it is of the order of 0.1 close to TK,
and smaller than YPS of approximatively 10%. In Fig. 2 we
report the behaviors of ‘C and ‘MCT that look very similar
even quantitatively to the analogous ones obtained in the
AB case [33]. This is in agreement with what was found in
simulations of supercooled liquids for the dynamical
length scale [17]. A direct comparison of ‘C and ‘PS is
presented in the inset of Fig. 2; they both diverge as a
power law 1=ðT � TKÞ, but ‘C is slightly smaller than ‘PS.
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FIG. 2 (color online). The lengths ‘C (squares) and ‘MCT

(circles) are plotted as a function of T in the case of random
boundaries. The divergence of ‘MCT is proportional to 1=ðT �
TMCTÞ1=4 (not shown). Inset: the behavior of ‘C (squares) as a
function of T � TK is compared to that of ‘PS (triangles): the
straight line indicates the common power law 1=ðT � TKÞ.
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The other quantity of interest is the behavior of the

average overlap, hqðcenÞi, between two independent equi-
librium configurations (in the presence of the same bound-
ary) at the center of the cavity. In the AB case, the average
overlap jumps discontinuously from a low to a high value
at ‘PS, whereas in the RB case it starts to increase in a
continuous way (with a discontinuous derivative) at ‘C, see
Fig. 3. Physically, this is due to the nature of the 1RSB
phase and to the probabilistic meaning of its parameter m:
in the ideal glass (1RSB) phase two equilibrium configu-
rations belong to different states (and have overlap q0) with
probability m and belong to the same state (and have an
overlap q1) with probability 1�m, contrary to the AB
case where as soon as the configurational entropy vanishes
only one stable configuration is left. Since m ! 1 for
‘ " ‘C, the average overlap at ‘C joins smoothly the one
corresponding to the regime ‘ > ‘C, where two configura-
tions are in different states with probability 1. Since the

curve hqðcenÞið‘Þ is smooth and does not follow a scaling
function fð‘=‘CÞ contrary to the AB case [it goes as
fð‘=‘CÞ=‘ for ‘ < ‘C and is exponentially small in ‘ for

‘ > ‘C, see the Supplemental Material [31]], hqðcenÞið‘Þ is
not suitable to determine ‘C numerically. A better observ-
able is instead the probability distribution of the overlap,
which should show for ‘ < ‘C two peaks, one at a value

qðcenÞ0 with weight m and one at a value qðcenÞ1 with weight

1�m, and for ‘ > ‘C only one peak centered in qðcenÞ0

(fluctuations of YC [7] are expected to make the crossover
between these two regimes smooth in real systems). In
experiments, the easiest protocol to study the effect of
confinement consists of measuring the relaxation time
that should first increase substantially approaching ‘C,

since the system undergoes a ‘‘finite-size glass transition’’
and then decreases (see the Supplemental Material [31]
and Ref. [32] for a more detailed discussion).
An interesting question relevant for numerical simula-

tions is whether periodic boundary conditions are more AB
or RB like. A reasonable working hypothesis is that
they resemble more the latter since they do not favor any
particular state. Recent numerical simulations have indeed
found a nonmonotonic dependence of the relaxation time
on the system size [37] and an Adam-Gibbs relation
between relaxation time and the size-dependent configura-
tional entropy [38] for supercooled liquids with periodic
boundary conditions.
This work based on RFOT theory shows that ‘‘simple’’

confinement allows us to probe the length associated to
amorphous order in supercooled liquids. We found that the
best observables to extract the confinement length are the
overlap distribution (which can be likely measured only in
simulations) and the relaxation time. We clarified similar-
ities and differences with the case of amorphous boundary
conditions, which are actually analogous to the ones found
for particles pinned at random from equilibrium and
random configurations (see, in particular, the similarity
between phase diagrams [18]). The conclusion of our
work is that confinement studies are a route worth pursuing
further since they provide direct access to the length asso-
ciated to the spatial extent of amorphous order in super-
cooled liquids. The interaction between the boundary and
the confined fluid is irrelevant as far as collective glassy
effects are concerned when ‘PS and ‘C are large compared
to molecular scales. This is not the case in experiments
where these large length scales are not large enough.
Therefore, it would be crucial to make the confining sur-
face ‘‘neutral,’’ i.e., with an interaction fluid-boundary as
similar as possible to the fluid-fluid one, and to work at
fixed density, for example, adapting the external pressure.
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