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Topological phases are unique states of matter which support nonlocal excitations which behave as

particles with fractional statistics. A universal characterization of gapped topological phases is provided

by the topological entanglement entropy (TEE). We study the finite size corrections to the TEE by

focusing on systems with a Z2 topological ordered state using density-matrix renormalization group and

perturbative series expansions. We find that extrapolations of the TEE based on the Renyi entropies with a

Renyi index of n � 2 suffer from much larger finite size corrections than do extrapolations based on the

von Neumann entropy. In particular, when the circumference of the cylinder is about ten times the

correlation length, the TEE obtained using von Neumann entropy has an error of order 10�3, while for

Renyi entropies it can even exceed 40%. We discuss the relevance of these findings to previous and future

searches for topological ordered phases, including quantum spin liquids.
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Topological phases are exotic states of matter that are
characterized by ground state degeneracy dependent upon
global topology of the system on which the phase resides,
and which host exotic excitations with fractional quantum
statistics. In recent years, surprising connections have
emerged between topological phases and quantum infor-
mation, stimulated by the prospect of using them to con-
struct an inherently fault-tolerant quantum computer [1,2].
Two-dimensional phases with topological order are well
known in connection with the fractional quantum Hall
effect [3], but are also expected to exist in frustrated
quantum magnets [4,5].

While topological phases are not characterized by any
local order parameter, theory shows that they can be iden-
tified by nonlocal quantum entanglement, specifically the
topological entanglement entropy (TEE) of the ground
states [6,7]. The entanglement entropy of a subregion A
of the system with a smooth boundary of length L is
defined from the reduced density matrix �A, according to

S1ðAÞ ¼ �Tr½�A lnð�AÞ�;
and takes the form

S1ðAÞ ¼ �1L� �;

where � is the TEE. Severe finite-size corrections of the
formulations in Refs. [6,7] due to lattice-scale effects
greatly hinder their practical application [8]. Instead, two
of us have recently proposed a practical and extremely
simple scheme, the ‘‘cylinder construction,’’ to accurately
calculate TEE [9]. The cylinder construction simply con-
sists of using the density-matrix renormalization group
(DMRG) [10] to calculate the usual von Neumann entan-
glement entropy for the division of a cylinder into two
equal halves by a flat cut, and extracting the TEE from its
asymptotic large-circumference limit. Thereby, we can

practically identify topological phases in arbitrary realistic
models, including physical spin models [9,11].
The work above utilized the von Neumann entanglement

entropy, and achieved an accurate extrapolation of the TEE
term. In the literature, many works study instead the gen-
eralized Renyi entropies, defined as

SnðAÞ ¼ 1

1� n
ln Tr�n

A;

while the von Neumann entropy S1 is defined as the limit
n ! 1. For simplicity, we will call Sn the Renyi entangle-
ment entropy when n � 2, while the von Neumann entan-
glement entropy when n ¼ 1. Theoretically, the universal
TEE is expected to be obtained also for the Renyi entropy,
with � independent of the Renyi index [12,13]. However,
extrapolations in the literature based on the Renyi entropy
appear to be substantially less accurate than those based on
the von Neumann entropy, even for larger boundary lengths
L [14]. In particular, the extrapolated TEE in Ref. [14]
from the second-order Renyi entropy S2 deviates from the
expected value with an error an order of magnitude larger
than that from von Neumann entanglement entropy S1 [9].
This suggests that extrapolations of Renyi entropies have
significantly larger finite-size effects than von Neumann
entropy.
In this Letter, we study the finite-size effects in the TEE

systematically for two canonical models of phases with Z2

topological order, and confirm the above suggestion. We
attempt to cast our results in terms of the expected form,

SnðLÞ ¼ �nL� �n; (1)

as a function of the Renyi index n. First, we study the
Toric-Code model whose TEE is known, using DMRG and
perturbative series expansions [15]. We then turn to the
more realistic S ¼ 1=2 antiferromagnetic Heisenberg
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model on the kagome lattice. For both cases, we find that
the Renyi entropies do have substantially larger finite-size
corrections than the von Neumann entropy. We provide
some understanding of this tendency from the fact, which
we show from the series expansion, that the line term �n

varies more rapidly with parameters with increasing n.
This makes the extraction of the subdominant �n term
less reliable.

Toric-Code model.—We begin with the well-known
Toric-Code model (TCM) [1] (see Supplemental Material
[16] for notational details). Without applied fields, i.e.,
hx ¼ hz ¼ 0, the pure TCM is exactly soluble [1] with a
Z2 topological ordered ground state. After turning on the
magnetic fields, the model is no longer exactly soluble.
Previous studies [17–19] show that the Z2 topological
phase remains stable and robust until the magnetic fields
are large enough that the system undergoes a phase tran-
sition from the topological phase to a trivial one.
Numerically, Jiang, Wang, and Balents have systematically
calculated the von Neumann entanglement entropy S1
using cylinder construction [9], and extrapolated an accu-
rate TEE �1 ¼ lnð2Þ in the Z2 topological phase, even very
close to the phase transition point. In this Letter, we further
calculate the Renyi entropy to study the finite-size effects
on the TEE �n as a function of Renyi index n. To make sure
that Sn only scales with the cylinder circumference Ly ¼
L, we will work with long cylinder, i.e., cylinder length
Lx >>�, where � is the spin-spin correlation length. For
the present study, we consider the cylinder with length up
to Lx ¼ 48, which is >� 40�, e.g., for the pure electric
case (i.e., hz ¼ 0) (see the Supplemental Material [16] for
details). Therefore, we can directly extrapolate the TEE �n

using Eq. (1).
To see the finite-size corrections, we first consider an

applied magnetic field only along the x direction, i.e., hz ¼
0. The extrapolated TEE �n are shown in Fig. 1(a) as a
function of magnetic field hx for fields within the topologi-
cal phase. As shown in the Supplemental Material [16], for

the fields in Fig. 1, the spin correlation length remains of
order one lattice spacing or smaller. We see that the linear
fit using data for Ly ¼ 6� 12 and Eq. (1) gives quite

accurate results for �1 for hx < hcx � 0:328 [17]. Even
for hx ¼ 0:3, very close to the quantum phase transition,
we obtain �1 ¼ 0:6945ð20Þ, which is accurate to the
expected value (i.e., the dashed line) to a fraction of
percent �0:2%. By contrast, the estimated TEE �n

obtained from the Renyi entropy for n � 2 shows dramati-
cally larger deviations from the universal value. These
deviations grow when approaching the phase transition
point, where the errors become an order of magnitude
larger than those for �1. For example, �2 ¼ 0:714ð5Þ at
hx ¼ 0:3, with an error around �3%. The deviations also
increase with Renyi index n, e.g., �7% for n ¼ 4, as
shown in Fig. 1(a) and inset of Fig. 4. Similar results
hold for the symmetric case hx ¼ hz, with even larger
finite-size corrections, as shown in Fig. 1(b) and the inset
of Fig. 4. Systematically, the finite-size corrections to the
TEE �n defined by Eq. (1) are much larger for the Renyi
entropy than for the von Neumann entropy.
Our expectation is that in the thermodynamic limit

Ly ! 1, all �n should converge properly to the universal

value. We look for signs of this tendency, by using a
moving two data-point fit. We can define �nðLyÞ using

two data points with different cylinder circumferences Ly

and Ly þ 2. Examples of such �nðLyÞ are shown in

Fig. 2 for hx ¼ 0:2 and hz ¼ 0 in (a), and for hz ¼ hx ¼
0:2 in (b), as a function of Ly. For both cases, �1ðLyÞ and
�nðLyÞ with n � 2 converge to the expected value with the

FIG. 1 (color online). The extrapolated TEE �n using von
Neumann entropy (i.e., n ¼ 1) and Renyi entropy (i.e., n � 2)
for the Toric-Code model with Lx ¼ 48, as a function of the
applied magnetic field hx, for (a) hz ¼ 0 and (b) symmetric case
hz ¼ hx. The dashed lines represent the expected universal
value, ln2, for the TEE in the thermodynamic limit.

FIG. 2 (color online). Moving two point data fits for the
extrapolated TEE �n for the Toric-Code model with Lx ¼ 48
for (a) hx ¼ 0:2 with hz ¼ 0, (b) hx ¼ hz ¼ 0:2, (c) hx ¼ 0:3
with hz ¼ 0, and (d) hx ¼ hz ¼ 0:3, as a function of the cylinder
circumference Ly and entropy index n. Here, �nðLyÞ are

fitted using two data points, i.e., SnðLyÞ and SnðLy þ 2Þ using
Eq. (1). The dashed lines represent the expected asymptotic
value � ¼ ln2.
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increase of Ly, which is consistent with our expectation.

Instead, for the other two cases, i.e., hx ¼ 0:3 and hz ¼ 0
in (c), and hz ¼ hx ¼ 0:3 in (d), �1ðLyÞ quickly converges
to the expected value, which is in sharp contrast to �nðLyÞ
using Renyi entropies with n � 2. For the latter cases, the
TEE is systematically overestimated. The curves in Fig. 2
do at least show downward curvature, also consistent with
eventual convergence to the universal value for larger Ly,

but it is clear that much larger systems would be required to
test this in detail, due to a larger correlation length � (see
Fig. S2 in the Supplemental Material [16]).

To understand the origin of the n dependence in the
extrapolations, we turn to a perturbative series expansion
calculation of the line term �n. Since the TEE is obtained
after subtraction of the much larger line term, an accurate
extrapolation of �n also requires an accurate calculation of
�n. While there have been perturbative studies of the
Kitaev model in a field [20] and some entanglement prop-
erties have also been studied [21,22], we are not aware of
any exact perturbative evaluation of its line entropy rele-
vant to our geometry. In order to carry out this calculation,
we turn to linked cluster methods [15].

We consider one of the ground state sectors of the TCM
and map the problem on to the transverse-field Ising model
(TFIM) if only hx is nonzero[17] and on to a Z2 lattice-
gauge model if both hx and hz are nonzero [19]. In either
case, one has a unique nondegenerate ground state. Here,
we will consider only the former mapping and the case
with only hx nonzero. Up to 4th order, the dependence on
hx and hz are additive and hence knowing the dependence
on hx and the symmetry under the interchange of hx
and hz, one can easily write down the full dependence on
hx and hz.

Given the exact mapping between the models, if we
were to calculate some property like the ground state
energy in a series expansion in the field, the expansions
would be identical to the TFIM. However, there is a crucial
difference for the entanglement entropies [23]. The TFIM
variables sit at the center of the plaquettes whereas the
TCM variables and the perturbing fields live on the bonds.
Furthermore, each state in the TCM is a linear superposi-
tion of many basis states (say in the �z basis). This affects
how the states are represented on either side of the partition
and hence the reduced density matrix as we discuss below.

In the linked cluster method, we can define a cluster by a
set of bonds, where the perturbative fields are present
[24,25]. The entanglement entropies can be expressed as

Sn ¼
X

c

WnðcÞ; (2)

where the sum is over all possible clusters c and the weight
of a cluster WnðcÞ is defined recursively by the relations

WnðcÞ ¼ SnðcÞ �
X

s

WnðsÞ; (3)

where SnðcÞ is the entanglement entropy for the cluster c
and the sum over s is over all subclusters of c.
One can show that, for the line entropy, the only clusters

that will give nonzero contributions in powers of h are
those that are (i) linked and (ii) that contain at least one
bond in subsystem A and one in subsystem B [24,25]. Here,
one should note that two bonds are linked if they meet at a
site or if they are on the opposite sides of an elementary
plaquette (because they can both change the flux through a
common plaquette). This implies that all such clusters must
be situated close to the interface between A and B. Since
such linked clusters can be translated along the line, it
follows that, for a large system, this entropy is proportional
to the length of the line. In fourth order, we can group
the perturbations into just two distinct clusters, whose
calculational details can be found in the Supplemental
Material [16].
For the line term of the Renyi entropy for n > 1, to order

h4, we obtain

�n ¼ 1

2

�
ln2� 9n

32
h4 þ 3n

n� 1

h4

128

�
; (4)

while the von Neumann entropy (n ! 1) becomes

�1 ¼ 1

2

�
ln2�

�
33

128
� 5

32
ln2

�
h4 � 3

32
h4 lnh

�
: (5)

Note that the innocuous hn lnh singularity is inevitable for
the von Neumann entropy in any model, where there are
Schmidt states, whose weight is zero in the unperturbed
model but becomes nonzero as a power of the perturbation
parameter.
In. Fig. 3 we show the line entropies �n obtained in

DMRG compared with the series expansion results (See
also Fig. S3 in the Supplemental Material [16]). The

FIG. 3 (color online). Line entropy �n obtained from DMRG
(block square) and perturbative calculation (red circle) for both
von Neumann entropy (i.e., n ¼ 1) and Renyi entropy (i.e., n �
2) for the Toric-Code model, as a function of the magnetic field
hx, here hz ¼ 0 and Lx ¼ 48.
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agreement is excellent. The important thing to note is the n
dependence of the line entropy. The linear n dependence in
Eq. (4) means that with increasing n, the line entropy
changes more rapidly with the applied fields. Since, the
topological entanglement entropy is obtained after subtrac-
tion of the much larger line entropy, it follows that with
increasing n the entanglement entropy would have a much
larger finite size correction, as the correlation length
increases.

Kagome Heisenberg model.—We now turn to the
spin-1=2 Heisenberg model on the kagome lattice, for
which compelling [26,27] and direct evidence [9,14] for
a topological quantum spin liquid has been obtained by
extensive DMRG studies, consistent with a Z2 topological
state [28–30]. Additional phenomenological predictions
for the Z2 state have appeared [31,32], and are also in
agreement with DMRG results. Furthermore, accurate
TEE �1 ¼ lnð2Þ has been obtained using cylinder construc-
tion [9], for the model with both first- and second-neighbor
interactions—see the Supplemental Material [16] for
details of the definition. Specifically, the extrapolated
TEE �1 ¼ 0:698ð15Þ at J2 ¼ 0:10 and �1 ¼ 0:694ð12Þ at
J2 ¼ 0:15, both within 1% of lnð2Þ ¼ 0:693.

As in the TCM, we find that the Renyi entropies give
much less accurate estimates of �n. The extrapolated TEE
�n for n � 2 clearly deviates from the expected value,
even when the cylinder circumference is much larger
than the correlation length, i.e., Ly � 10� (the correlation

lengths are known from the earlier study in Ref. [9]). For
example, as shown in Fig. S5, a linear fit using Eq. (1) gives
�2 � 0:44ð2Þ at both J2 ¼ 0:10 and J2 ¼ 0:15: a huge
error of �40%. Moreover, with increasing Renyi index
n, the deviation becomes even larger, reaching, for ex-
ample �60% for n ¼ 4, as shown in Fig. 4. These results

show that large finite-size corrections to the Renyi entro-
pies obtain not only in the ‘‘artificial’’ TCM, but also in
realistic quantum spin Hamiltonians.
Summary and conclusion.—In this Letter, we studied the

finite-size scaling of the TEE for systems with Z2 topo-
logical order, using DMRG simulations and perturbative
series expansions. We find that generally the finite-size
errors in the TEE based on the Renyi entropy estimators
(i.e., n � 2) are much larger than those obtained from the
von Neumann entropy (i.e., n ¼ 1). In particular, when the
cylinder circumference is around 10 times the correlation
length, Ly � 10�, the extrapolated TEE using von

Neumann entropy is quite accurate with an error of order
10�3. On the contrary, the error can be orders of magnitude
larger for Renyi entropy. For instance, for the spin-1=2
kagome Heisenberg model, the error is only around a
fraction of percent for von Neumann entropy, while it is
40% or even larger for Renyi entropy. Perturbative study of
the TCM shows that the larger finite size corrections for the
TEE originates in part from the enhanced variation with
parameters of the line entropy �n with increasing n. This
indicates, moreover, that estimates of the TEE become less
accurate with increasing n. We note that errors of the
magnitude found here for n � 2 in the kagome
Heisenberg model are large enough to perhaps preclude a
definitive identification of the topological phase, even if we
assume that a universal value is obtained in the thermody-
namic limit. Our results clearly indicate that great care
must be taken into account for finite size corrections in
numerical calculations of the TEE, particularly those based
on Renyi entropies with n � 2. This gives techniques, such
as DMRG, which have direct access to the full density
matrix and hence von Neumann entropy, a distinct advan-
tage. Although in this Letter we have focused on systems
with Z2 topological order, similar conclusions may be
expected more generally.
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