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We explore potentials that break time-reversal symmetry to confine the surface states of 3D topological

insulators into quantum wires and quantum dots. A magnetic domain wall on a ferromagnet insulator cap

layer provides interfacial states predicted to show the quantum anomalous Hall effect (QAHE). Here, we

show that confinement can also occur at magnetic domain heterostructures, with states extended in the

inner domain, as well as interfacial QAHE states at the surrounding domain walls. The proposed geometry

allows the isolation of the wire and dot from spurious circumventing surface states. For the quantum dots,

we find that highly spin-polarized quantized QAHE states at the dot edge constitute a promising candidate

for quantum computing qubits.
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Introduction.—A 3D topological insulator (TI) is char-
acterized by a gapped bulk band structure and a gapless
dispersion of surface states, with low-energy excitations
described by the Dirac equation [1–8]. The strong spin-
orbit interaction (SOI), responsible for such exotic surface
states, makes TIs interesting for spintronics applications
[9–14]. For this purpose, it is desirable to introduce and
control a gap into the Dirac cone, which requires potentials
that break time-reversal symmetry (TRS) [1,2,15–20].
In graphene, magnetic confinement can be obtained by
engineering a nonuniform vector potential [21]. In TIs,
one possible mechanism is the exchange coupling induced
by a ferromagnet insulator (FMI) deposited on top of a TI
[19,20,22]. In the quantum anomalous Hall effect (QAHE)
[15,23], TI states confined along a domain wall of the FMI
are helical and carry a dissipationless current. These cor-
respond to one-half of the quantum spin Hall effect
[24,25]. Experimental observation of the QAHE was
recently discussed in Ref. [26].

In this work, we explore gapped 3D TI surface states to
define quantum wires and quantum dots beyond the
domain-wall-induced interfacial states. For concreteness,
we consider the exchange coupling induced by a FMI cap
layer [19,20] as the TRS-breaking potential; see Fig. 1. We
show that the confinement of the surface states follows the
magnetization domains’ pattern (magnetic heterostruc-
tures), with the interfacial QAHE states as a particularly
interesting case. This geometry protects the system against
spurious circumventing surface states. We show that the
interfacial QAHE states are highly spin polarized due to a
constraint imposed by the hard-wall boundary conditions
[16–18], and a generalization to realistic soft-wall poten-
tials only slightly relaxes this constraint. For quantum dots,
we find quantized interfacial QAHE states, which consti-
tute promising candidates for quantum computing qubits.
The high spin polarization of these states and the pure
magnetic confinement potentially suppress effects from
nonmagnetic perturbations.

Hamiltonian and helicity.—We consider the 2D Dirac
Hamiltonian for the surface states of a 3D TI [1,7,27]

H ¼ vF� � � þ Vð�Þ þ �zB�z; (1)

with Fermi velocity vF, Pauli matrices � ¼ ð�x; �y; �zÞ,
conjugate momentum � ¼ pþ eA, p ¼ ðpx; pyÞ, and

� ¼ ðx; yÞ. The spin operator is S ¼ ð@=2Þð�y;��x; �zÞ.
For the Fock-Darwin states discussion, we choose the

symmetric gauge A ¼ B��̂=2 in polar coordinates (B ¼
r�A ¼ Bẑ). The external potential Vð�Þ is a 2� 2
matrix and will be discussed later on. The last term is the
Zeeman splitting with gyromagnetic ratio �z.
The Dirac spectrum of H with Vð�Þ ¼ 0 and

�z ¼ 0 is helical; see Fig. 1(b). The helicity operator

FIG. 1 (color online). (a) Surface states of 3D TIs confined by
domains of a FMI that create a TRS-breaking potential V
through exchange coupling. The bare TI spectrum V ¼ 0 is a
helical Dirac cone with a Rashba spin orientation k̂� ẑ. The
potential V � 0 tilts the spins out of the plane. The mean value
of the helicity operator hhi quantifies the deviation from the
helical case. (c) Quantum wire and dot defined by the magnetic
heterostructure pattern. (d) Arrangement of four dots defining
two qubits.
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h ¼ 2ðS� p̂Þ � ẑ ¼ 2St measures the in-plane spin projec-
tion transversal to the momentum. For helical states,
½H; h� ¼ 0. The eigenstates shown in Fig. 1(b) have ener-

gies "�ðkÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð@vFkÞ2 þ ð�zBÞ2

q
[for Vð�Þ ¼ 0, A ¼

0]. The corresponding eigenstates are

c�ð�Þ ¼ @vFk�
"� � �zB

� �
eik��; (2)

with k� ¼ kx � iky. For �zB ¼ 0, the spins lie in the xy

plane with a Rashba orientation. A finite �zB � 0 breaks
TRS, opening a 2�zB gap. In this case, ½H; h� � 0, and
jhhij< 1 quantifies the deviation from helical states as the
spins tilt out of the plane. This hedgehog spin texture was
recently observed [19,20].

Hard- and soft-wall potentials.—The hard-wall bound-
ary conditions for the Dirac equation were extensively
discussed in the literature [16–18]. Because of the first-
order derivatives in the kinetic operator, the spinor is
discontinuous across a hard wall [17]. McCann and
Fal’ko [18] established a classification of matrices for
hard-wall confinement. Here, we follow a slightly different
derivation that allows an immediate generalization to
define soft-wall confining matrix potentials Vð�Þ.

One can consider H with A ¼ 0 and �zB ¼ 0 without
loss of generality. We write the general potential as

Vð�Þ ¼ V0
~M�ð�� �BÞ; (3)

where V0 is the scalar intensity, ~M is a unitary Hermitian
matrix, and �ð�� �BÞ is the step function defining
the boundary at � ¼ �B with the coordinates along
the normal unit vector n̂B. In the hard-wall limit V0 !
1, the spinor discontinuity at the interface reads
c ð�Þ � c ð�BÞ½1��ð�� �BÞ�. Consequently, rc ð�Þ�
�c ð�BÞ�ð���BÞn̂B, and Vð�Þc ð�Þ�@vF

~Mc ð�BÞ�ð��
�BÞ. IntegratingH along n̂B across the boundary, we obtain
the hard-wall boundary conditions [18]

ð1� i�B
~MÞc ð�BÞ ¼ 0; (4)

with�B ¼ n̂B � �. Equation (4) admits nontrivial solutions
c ð�BÞ � 0 only if ð1� i�B

~MÞ is singular, which requires
f ~M;�Bg ¼ 0 and ~M2 ¼ 1. Soft-wall potentials (finite V0)
defined by matrices ~M that satisfy the above conditions
show confined spinors, continuous at the interface � ¼ �B,
and with penetration length ‘ ¼ @vF=V0. The discontinu-
ity is recovered as ‘! 0 in the hard-wall limit.

For a quantum wire along x̂, �B ¼ ��y and the above

conditions give ~M ¼ �z or �x. For a circular quantum dot
�B ¼ �r (radial), the requirement is ~M ¼ �z or ��

(polar). The cases �x and �� correspond to the Landau

level terms from A ¼ �yBx̂ (wire) and A ¼ ð1=2ÞB��̂
(dot), both yielding B ¼ Bẑ. The ~M ¼ �z potentials can
be implemented by a nonuniform Zeeman term or a local
exchange coupling with a FMI cap layer, as in Fig. 1.

Quantum wire.—For simplicity, consider H with A ¼ 0
and �zB ¼ 0. The soft-wall confinement potential is

VðyÞ ¼
�
Vi�z for jyj<w=2
Vo�z for jyj � w=2;

(5)

where Vi and Vo are the amplitudes inside and outside the
wire of width w. The solutions of each piecewise region

(labeled by j) are given by Eq. (2), replacing ky ! kj ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð"2 � V2

j Þ=ð@vFÞ2 � k2x
q

. The local band structure of

each region is equivalent to Fig. 1(b) with a 2Vj gap. The

wire band structure is obtained by imposing the spinor
continuity at the interfaces y ¼ �w=2, with evanescent
solutions on outer regions (j"j< jVjj for jyj � w=2).

Figure 2 shows the wire energy dispersion for Vo ¼
10@vF=w and Vi indicated on the panels. The sign change
between Vi and Vo in Fig. 2(b) is equivalent to the band
inversion in TI and leads to localized interfacial states
[Fig. 2(c)] within the gap region (gray area). These are
the QAHE states [1,15,23–26]. The other branches corre-
spond to normal, nontopological states localized within the
full inner domain region, as shown in Fig. 2(d).
Since the momentum is along x̂, the SOI locks the spin

into the Sy � Sz plane. Here, we use ( , ! ) to refer to

FIG. 2 (color online). (a),(b) Band structure of the quantum
wire for Vo ¼ 10@vF=w and Vi ¼ �2@vF=w. The gray area
delimits the gap of the inner region. (a) Potentials Vi and Vo

with opposite signs lead to a band (dashed line) of interfacial
states at the edges. (c),(d) Density jc ðyÞj2 for the kx ¼ 1=w
states of the lowest bands [indicated by black dots in (a) and (b)].
The density of the second band is shifted upwards for clarity. The
color code represents the spin texture along the Sy � Sz plane

[( ,! ) and ( " , # ), respectively], locked by SOI in the Dirac
equation. The dashed lines show the hard-wall solutions for
comparison.
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the projections along Sy, and ( " , # ) for Sz. In the hard-wall
limit, the boundary condition given by Eq. (4) implies that
at y ¼ þð�Þw, the local spin is (! ). The QAHE states
are localized at these edges, and in the strong confinement
limit (large Vi or wide wire), their spin projection
approaches full in-plane polarization ( or ! ), thus
reaching the helical regime jhhij ¼ 1 and suppressing the
gap in Fig. 2(a). The soft wall slightly relaxes this condi-
tion but still shows such a spin constraint; see Figs. 2(c)
and 2(d). More generally, the spatial spin texture follows
the color-code diagram, and the number of rotations
between the edges increases with the band index; see
Fig. 2(d).

Quantum dots.—To solve H for a quantum dot in polar
coordinates x ¼ � cos� and y ¼ � sin�, the kinetic term
has to be symmetrized

vF� � � ! vFð�rpr þ ��p�Þ þ i@vF

�r

2r
þ @!B

���

2‘B
;

(6)

where pr and p� are components of the momentum opera-

tor, !B ¼ vF=‘B is the cyclotron frequency, and ‘B ¼ffiffiffiffiffiffiffiffiffiffiffi
@=eB

p
is the magnetic length. The radial and polar Pauli

matrices are �r ¼ �x cos�þ �y sin� and �� ¼
��x sin�þ �y cos�. In Eq. (6), the second term arises

from the symmetrization and the last term from the sym-
metric gauge, responsible for the Landau levels (LLs). The
dot radial soft-wall potential Vð�Þ has the same form of
Eq. (5), with the inner and outer regions delimited by the
radius R.

The z component of the total angular momentum (Jz ¼
Lz þ Sz and Lz ¼ �i@@�) commutes withH. The common
set of eigenstates yields c mð�; �Þ ¼ ’mð�Þc mð�Þ, with a

diagonal matrix ’mð�Þ ¼ diag½eim�; eiðmþ1Þ��. The integer
m defines the eigenvalues ½mþ ð1=2Þ�@ of Jz. For B ¼ 0,
the radial solutions are

c j
mð�Þ ¼

ffiffiffiffi
�
p

Qj
mðkj�Þ

i@v?kj
"þVj

ffiffiffiffi
�
p

Qj
mþ1ðkj�Þ

2
4

3
5; (7)

where j labels the inner and outer regions, @vFkj ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � V2

j

q
, and Qi

mðxÞ ¼ JmðxÞ and Qo
mðxÞ ¼ Hð1Þm ðxÞ are

the Bessel and the Hankel functions of the first kind. For
finite B, the solutions are given by Kummer M and U
functions (not shown). The eigenstates are found imposing
continuity at the interface � ¼ R.

The eigenenergies are shown in Figs. 3(a)–3(c) as a
function of hLzi orm. For ViVo < 0, a branch of interfacial
states is present [Figs. 3(a) and 3(d)], corresponding to a
quantization of the QAHE wire states from the domain
wall at the dot edge. The SOI constrains the spatial spin
texture to be along the Sr � Sz plane. At � ¼ 0, the spin
can only be " or # due to symmetry, and at � ¼ R, the hard-
wall boundary condition imposes spin! or . As for the

wire, in the strong confinement limit, the interfacial states
approach the helical regime (jhhij ¼ 1) as the spin
becomes fully in plane. These are the states we argue to
be promising qubit candidates.
TI Fock-Darwin and Landau level states.—As in the

normal Fock-Darwin states, at low B, the quantum dot
confinement Vð�Þ is dominant, while at high B, the vector
potential term leads to the highly degenerate LLs; see
Fig. 4 (for �z ¼ 0). The LL confinement is normal; i.e.,
it does not contain a gap inversion. Therefore, the inter-
facial states present for ViVo < 0 at low B are expelled
from the gapped region (gray area) as the LL confinement
becomes dominant.
Two-qubit gates.—Consider the linear arrangement of

four quantum dots in Fig. 1(d), where each qubit is defined
by a pair of dots with states from the interfacial QAHE
branch; see Figs. 3(a) and 3(d). Their energy separation
defines a temperature energy scale kBT � @vF=R, which
avoids coupling to other states in this branch.
Each pair of dots containing a single electron within this

subspace is described by a 2� 2 effective Hamiltonian

Hqubit ¼ �d�x þ �d�z; (8)

where � ¼ ð�x; �y; �zÞ are Pauli matrices acting on single-

particle states localized on each dot. The single-particle

FIG. 3 (color online). (a)–(c) Eigenenergies as a function of
hLzi forVo ¼ 10 andVi ½@v?=R� indicated in the panels. The gray
or white stripes delimit different values m (on top).
The arrows represent the average spin projections hS�i (log scale)
in the Sr � Sz plane [( ,! ) and ( " , # ), respectively]. (a) For
ViVo < 0, the diagonal branch of interfacial states corresponds to
a quantization of the QAHE wire states. (d)–(f) Corresponding
densities jc mð�Þj2 for m ¼ 0 of the first and second positive
energy states in (a)–(c) (some shifted for clarity). The dashed
lines are the hard-wall solutions for comparison.
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hybridization energy�d and the dot-energy detuning �d ¼
ð"1 � "2Þ=2 [or ¼ ð"3 � "4Þ=2] can be controlled by elec-
trostatic gates and electric fields, respectively.

To derive an effective qubit Hamiltonian HQ for two

particles in four dots, we label the basis of Slater determi-
nants, with the particles at sites i and j, as jsiji. Since the
single-particle spinors are highly localized, and consider-
ing the interdot distances ad < aq � ‘, the Coulomb in-

teraction reduces to a simple on-site repulsion description;
thus, it is diagonal in the localized jsiji basis. The diagonal
matrix elements reads Dij ¼ hsijjUCjsiji � e2=	rij,

where 	 is the dielectric constant and rij the distance

between dots i and j. Moreover, we consider a regime
where all Dij dominate over the single-particle hybridiza-

tion energy�d. The condition ad < aq leads to high charg-

ing energies per qubit,D12 ¼D34 	 otherDij, allowing

us to neglect the doubly occupied states. Within the
reduced basis fjs14i; js13i; js24i; js23ig, we obtain

HQ ¼
E00 0 0 0
0 E01 � 0
0 � �E01 0
0 0 0 E11

0
BBB@

1
CCCA: (9)

The matrix elements in HQ are

E00 ¼ �C00 � �þ �a=2; (10)

E01 ¼ �b=2; (11)

E11 ¼ C11 � �� �a=2; (12)

� ¼
�

2�2
d

2C00 � �a

� 2�2
d

2C11 � �a

�
; (13)

where C00 ¼D13 �D14 and C11 ¼D23 �D13. Weak
electric fields applied at each dot can control the indepen-
dent parameters �a and �b defined by the dot detuning
�a ¼ "1 � "3 þ "4 � "2 and �b ¼ "1 þ "3 � "4 � "2.
The central block of HQ has eigenenergies

�@!01 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
b=4þ �2

q
.

Because of the strong Coulomb repulsion, the ground
state of the system is js14i, where the particles are repelled
to the outer dots. The higher-energy state is js23i with the
particles in the inner dots. The other two states have similar
energies due to the symmetry (js13i and js24i are mirrored)
and hybridize. This motivates the choice of logical ‘‘0’’
and ‘‘1’’ qubit states as j00i ¼ js14i, j01i ¼ js13i, j10i ¼
js24i, and j11i ¼ js23i.
Assuming a rectangular pulse control of the interaction

parameters, the time evolution takes the form Uð�Þ ¼
exp½�iHQ�=@�. This defines a controlled phase-flip

(CPF) gate Uð�Þ ¼ diag½1; 1; 1;�1�, for an operation
time � ¼ 2
n1=!01, if the detuning parameters �a and
�b are set to satisfy

E00

!01
¼ �n2

n1
and

E11

!01

¼ n3 þ 1=2

n1
; (14)

with integers n1 and n2 > 0, and n3 � 0.
Energy scales.—The single-particle energy scales are set

by @vf � 300–500 meVnm for typical materials (Bi2Se3,

PbxSn1�xTe); thus, for wire width w or dot radius R about
100 nm, the energy scale for the confinement potential lies
on the meV range. The on-site Coulomb repulsion is
e2=	r � 1400=	r meV for r in nm. Since the dot distance
is r > 2R, the energy scales satisfy e2=	r & @vf=R for the

dielectric constant 	 * 2.
Conclusion.—We considered the confinement of 3D TI

surface states by time-reversal-breaking potentials, relaxing
the established hard-wall boundary conditions [16–18] into
soft-wall potentials. These can be implemented via local
exchange coupling with a ferromagnet insulator cap layer
[1,2,19,20,23]; see Fig. 1. In the proposed heterostructure
geometry, the confinement is patterned by magnetic
domains built within a larger domain with different mag-
netization, such that it isolates the system of interest from
spurious TI surface states. This is equivalent to the action of
split gates on a normal 2D electron gas. We expect that the
QAHE interfacial states at the edge of quantum dots can
potentially be promising candidates for a qubit, since the
high spin polarization of the helical regime can potentially
suppress the effects of nonmagnetic perturbations.
Moreover, the fully magnetic confinement induced by the
ferromagnetic domains is less sensitive to electrostatic
fluctuations than the usual split-gate electrodes.
The authors acknowledge support from the Swiss NSF,

NCCR Nanoscience, and NCCR QSIT.

FIG. 4 (color online). TI Fock-Darwin states (� 3 
 m 
 3)
converging into Landau levels as a function of the magnetic field
parametrized by R2=‘2B. Here, we consider hard-wall boundary
conditions Vo ! 1 and Vi as indicated in each panel. (a) With
increasing B, the interfacial states are expelled from the
gap region (gray area), as the LL confining potential becomes
dominant over Vð�Þ. For high magnetic fields, all cases converge

to the LL spectrum "nLL ¼ �@!B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nLL þ ðVi=@!BÞ2

p
for

nLL � 0, and "0 ¼ �Vi for nLL ¼ 0 (dashed lines).
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