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We present a generalized model to explain the spatial and temporal evolution of photoinduced surface

structure in photosensitive amorphous thin films. The model describes these films as an incompressible

viscous fluid driven by a photoinduced pressure originating from dipole rearrangement. This derivation

requires only the polarizability, viscosity and surface tension of the system. Using values of these physical

parameters, we check the validity of the model by fitting to experimental data of As2S3 and demonstrating

good agreement.
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Introduction.—Photoinduced surface relief structures
are generated in a variety of materials including
azobenzene-containing polymers, chalcogenide glasses
(like As2S3, AsSe, and GeAsSe), and other amorphous
materials [1–5]. Macroscopic surface structures can be
inscribed by illumination with a laser field having spatially
varying intensity or polarization [6]. This phenomenon is
potentially useful for technologies such as rewritable opti-
cal data storage, active optical devices, nanofabrication,
and optical actuators [7]. However, to date a complete
description of the underlying microscopic mechanism has
not been produced.

Much experimental and theoretical work has been
performed to clarify the mechanism of this phenomenon.
Models have been proposed to describe the formation of
surface relief [3,8], where volumetric internal pressure,
interaction among dipoles, anisotropic diffusion, or optical
gradient forces were considered as the driving force for
deformation [9–11]. These efforts have not led to a unified
model that captures all experimental observations.

Here we model surface relief formation as arising from
viscous flow driven by the opposition of surface tension
and an optically induced pressure which provides a driving
force for mass transport that depends on both intensity and
polarization. Accommodating both of these dependencies
in a single model formulation is the main innovation of
this work. Simulations using our model agree well with
literature data on the temporal and spatial dependence of
optically induced surface relief in As2S3.

The model.—For simplicity and correspondence with
past experiments we model a film of chalcogenide glass
exposed to normal-incidence, time-independent, near-
band-gap illumination that varies in one direction along
its surface (the x axis) but is uniform along the other
surface axis (y). At near-band-gap wavelengths films
with thicknesses of order 1 micron or less are optically
thin and so we take illumination to be uniform in the
direction normal to the film’s surface (z) [12]. Figure 1
illustrates this coordinate system. We assume that the vis-
cosity remains high enough to justify the low-Reynolds

number lubrication approximation to the Navier-Stokes
equations [13]. We further posit that surface tension
and the optically induced pressure are the dominant forces.
The above assumptions bring surface relief formation
within the scope of the Navier-Stokes equation simplified
into a two-dimensional boundary layer equation in
x and z [14] (see Fig. 1).
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where the vi’s are components of the velocity vector, � is
the mass density, P is the total pressure, f is the body
force, and � is the kinematic viscosity. Deriving the stan-
dard high-surface-tension lubrication equation in the pres-
ence of a pressure and absence of any body force yields
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in which hðx; tÞ is the film thickness, � is the dynamic
viscosity, s is the curvature coefficient of the surface
tension, and PðxÞ is the optically induced pressure, which
is assumed to vary only in x because that is the only

FIG. 1. Schematic of the typical experimental setup used to
generate surface structure. Two beams, W1 and W2, interfere on
the surface of a thin film of amorphous, light-sensitive material,
leading to the pictured definitions of the coordinate system and
polarization directions.
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dimension in which the illumination is modulated [14–17].
The complete derivation can be found in the Appendix.
Given a model of the optically induced pressure, Eq. (2) is
readily solvable by standard numerical methods.

Our model of the optically induced pressure is based on
two assertions. First, the pressure arises from the electric
field of the incident light. Second, the material responds
through the motion of photoinduced dipoles. In the case of
amorphous chalcogenides, each dipole corresponds to a
group of atoms on the scale of 3 coordination spheres
[18,19] which is capable of rearranging (i.e., mass trans-
port) to change the orientation of the dipole (see Fig. 2).
The experimental and theoretical literature indicate that
these dipoles persist (fixed to the underlying atomic struc-
ture) as long as the illumination is present [19–22].
Moreover, although various mechanisms may generate
photoinduced dipoles in different materials [20,23], the
model applies as long as those dipoles exist. The strength

of the dipoles are given by ~P ¼ R
d3r�ð ~rÞ ~r, where the

charge distribution �ð~rÞ might be obtained from first-
principles calculations [24].

To calculate the photoinduced pressure we start with the
relation pressure / @ energy / @V. Equations describing the
total free energy density of a dipole interaction system in
the presence of an electric field are given by Landau [25],

energy ¼ F0 þ �ik�0EiEk; (3)

where Ei and Ek are components of the electric field, F0 is
the free energy of the system in the absence of an external
field, �ik is a component of the relative permittivity tensor,
and Einstein notation has been used. In the dipole interac-
tion model, �ik describes the polarizability of the dipoles

when exposed to the optical electric field. Rigorous results
for the pressure are obtained from Eq. (3), in terms of the
stress tensor

�ik ¼ �0EiDk: (4)

Inserting Dk ¼ �ð�kmEmÞ into Eq. (4), yields

�ik ¼ �0Eið�kxEx þ �kyEy þ �kzEzÞ: (5)

Optical electric fields oscillate much faster than any time
scale relevant to the flow and so the material must respond
to the time average of the electric field. Thus, taking the
trace of the stress tensor and calculating its time average,
we can write the pressure as

P ¼ 1

3
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3
hExð�xxEx þ �xyEyÞ þ Eyð�yxEx þ �yyEyÞi

¼ �0
3
h�xxE2
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2
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Noting that the material can respond only to the real part of
the electric field, we require PðEx; EyÞ ¼ Pð ~Ex; ~EyÞ where
~Ex ¼ <efExg. So Eq. (6) becomes

PðEx; EyÞ ¼ Pð ~Ex; ~EyÞ
¼ �0

3
h�xx ~E2

x þ 2�xy ~Ex
~Ey þ �yy ~E

2
yi: (7)

The coefficients in Eq. (7), which describe the polarizablity
of the material, can be measured experimentally [26].
With these coefficients, the pressure is readily calculated.
Equation (7), when combined with Eq. (2), completes our
model. All the coefficients are determined by the properties
of the material. This approach is general for materials
that can be thought of as a collection of small, mobile,
polarizable units. Furthermore, photoinduced surface relief
formation is not observed in most materials because the
polarizability of these units is small or because the viscos-
ity and/or surface tension is large.
Simulation.—To check the validity of the model, we

calculate the solution to Eq. (2) on a typical holographic
setup used to generate surface structure (see Fig. 1). In the
setup, everything about the two interfering beams is iden-
tical except for the direction of their wave vectors and
possibly their polarization. The most generic electric field
produced by such interference can then be written

FIG. 2 (color online). Schematic of photoinduced dipoles
(on the scale of about 3 coordination spheres [19]) and their
rearrangement leading to mass transport [22]. Dipoles can lower
their energy by changing configurations in response to the
optical electric field. In the case of linear polarization the dipoles
will align with the optical electric field.

TABLE I. Summary of the photoinduced pressure predicted by Eq. (9) for various polariza-
tion conditions. I, c , and �� are derived from the interference of electromagnetic waves.
� ¼ nc�0=2 is a constant. � ¼ 2	


 x sin�2 for � as in Fig. 1.

Polarization IðxÞ=� c ðxÞ ��ðxÞ PðxÞ
s-s 2E2

mðxÞð1þ cos2�Þ 	=2 0 ðc1 � c2Þ2E2
mðxÞð1þ cos2�Þ

p-p 2E2
mðxÞð1þ cos2�Þ 0 0 ðc1 þ c2Þ2E2

mðxÞð1þ cos2�Þ
s-p 2E2

mðxÞ 	=4 �2� 2E2
mðxÞðc1 þ c3 cos2�Þ

45–135 2E2
mðxÞ � �	=2 2E2

mðxÞðc1 þ c2 cos2�Þ
LCP-RCP 2E2

mðxÞ � 0 2E2
mðxÞðc1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c22 þ c23

q
sin½2�þ arctanðc3=c2Þ�Þ

PRL 111, 105503 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

6 SEPTEMBER 2013

105503-2



eiðkx�!tÞ jExjei�x

jEyjei�y

 !
; (8)

where jExj, jEyj, �x, and �y are arbitrary, real, and time

(but not necessarily position) independent. Defining a gen-
eralized polarization angle c ¼ arctanjEyj=jExj, inserting
Ex and Ey from Eq. (8) into Eq. (7), and computing the

time averages gives

P¼ IðxÞ
�

½c1þc2 cos2c ðxÞþc3 cos��ðxÞsin2c ðxÞ�; (9)

where the optical intensity IðxÞ=� ¼ jExðxÞj2 þ jEyðxÞj2,
may vary only along x axis, � ¼ nc�0=2, and the coeffi-
cients are: c1 ¼ �0�xx=6, c2 ¼ �0ð�yy � �xxÞ=6 and c3 ¼
�0�xy=3. Equation (9) is intuitively reasonable since it

depends on intensity, polarization, and��, the three quan-
tities whose modulation has been experimentally shown to

cause surface relief formation [3,27]. Taking the first
spatial derivative of Eq. (9) yields

@P

@x
¼ 1

�

@IðxÞ
@x

½c1 þ c2 cos2c ðxÞ þ c3 cos��ðxÞ sin2c ðxÞ�

þ 2IðxÞ
�

@c

@x
½�c2 sin2c ðxÞ þ c3 cos��ðxÞcos2c ðxÞ�

þ IðxÞ
�

@��

@x
½�c3 sin��ðxÞ sin2c ðxÞ�: (10)

Equation (10) cleanly separates into three independent
terms governing the pressure gradient induced by modula-
tion of the intensity, polarization direction, and phase.
Accordingly, this model is consistent with the idea sug-
gested by previous experiments that the intensity and phase
modulation effects can be saturated without saturating the
polarization modulation effect [3,28,29].
Table I lists the pressure functions predicted by Eq. (9)

for commonly used polarization conditions. Despite the
widely varying initial conditions considered, in the cases
studied PðxÞ can always be represented by the same gen-
eral form. From the experimental setup, we also have
jExðxÞj2 ¼ jEyðxÞj2 ¼ E2

mðxÞ, where the real electric field

amplitude, [rewritten as EmðxÞ], typically has a Gaussian

profile [E2
mðxÞ ¼ E2

0e
�2ðx=p2Þ2 , where E0 is the maximum

electric field]. This allows Eq. (9) to be rexpressed as

PðxÞ ¼ p1e
�2ðx=p2Þ2½p3 þ cosðp4xþ p5Þ�; (11)

where the pi’s are parameters set either by the experimen-
tal setup or properties of the material. p4 is fixed as the
spatial modulation frequency and p2 is the beam radius;
both are the same across all polarization conditions. p5 is
included to account for the possibility that the Gaussian
intensity profile is not centered on a peak of the modula-
tion. p1 and p3 are related to the polarizability of the
material, which can be measured experimentally [26].
Results.—Figure 3 demonstrates the model’s prediction

of the dynamics of light-induced grating formation in

FIG. 3 (color online). Plots of maximum grating amplitude
evolution versus irradiation fluence (time). The curve is produced
by taking snapshots of the surface profile at different fluence and
recording the maximum grating amplitude for each. Each curve
corresponds to a set of material parameters: {p1, �, �g, where p1

is directly related to the polarizability �ij (see Table I), � is

surface tension, while � is the dynamic viscosity. The upper
curve, generated by {p1 ¼ 1:8� 10�2 J=m3, � ¼ 0:060 J=m2,
� ¼ 0:208� 1011 Pa � sg, simulates the response of As2S3.

TABLE II. Summary of the parameters used in constructing the fit depicted in Fig. 5.

Parameter Comment Value

Parameters from experimental setup

h0 Initial thickness 2 �m
T Total illumination time 381 s

p2 Illumination radius 57 �m
p3 Nonoscillatory pressure 1

p4 Modulation frequency 2	=13 �m�1

p5 Modulation phase 	=2
Fitting parameters by model

p1=� Relative pressure strength 0:30 m�1

�=� Characteristic growth rate 0:0114 �m=s
Parameters from calculation

p1 Extracted from [26] (10�2 J=m2) 0.45–1.8

� Surface tension (J=m2) 0.015–0.060

� Dynamic viscosity (1011 Pa � s) 0.052–0.208
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different hypothetical materials defined by a set of parame-
ters {p1, �, �g, assuming p-p polarization. The illumina-
tion radius p2 is 57 �m, and the model is evaluated using
the finite difference method with a time step of 1/200 s. As
can be seen from the figure, lower surface tension and
viscosity lead to higher maximum grating amplitude.

In order to test our model we compare it to experimental
results for As2S3 in [3]. Setting c2 ¼ 3c1 and c3 ¼ 2c1
approximates that paper’s qualitative description of the
observed size ordering for different polarization condi-
tions. This choice captures the well-known anisotropy of
As2S3 in response to an external optical field and suggests
that �yy ¼ 4�xx and �xy ¼ �xx. In order to fit the data, we

combine the p1, �, � into two ratios, p1=� and �=� and
do a least square fit to get the optimal values as given in
Table II.

Figures 4 and 5 show the model’s fit to the time and
space dependence of surface relief formation observed
in [3]. The amplitude and frequency of the calculation
match the experimental data and growth rate as a function
of time fits well over a wide range of fluences.

The values of the fitting parameters can be compared to
the literature in order to assess their validity. As described
in Eqs. (9)–(11), the polarizabilities �ij are grouped into

the parameter p1 according to the setup geometry. With
the values of �ij from [26], p1 is calculated to be

0:45–1:8� 10�2 J=m2. Surface tension and viscosity can
then be determined from the values of the fitting parame-
ters, and calculated to be � ¼ 0:015–0:060 J=m2 and

� ¼ 0:052–0:208� 1011 Pa � s. These agree well with
measurements from literature: � ¼ 0:059–0:168 J=m2

[30], � ¼ 1011–1013 Pa � s [31]. Together with Table I,
these results explain the intensity and polarization depen-
dence of light-glass interactions in the case where strong
relief gratings are observed. The model suggests that not
only does intensity modulation lead to grating formation
but also cross-polarized holographic exposure of uniform
intensity leads to gratings as observed in [3,28].
In summary, the goal of this work was to study the

mechanism of photoinduced mass transport and the result-
ing surface morphology changes in chalcogenide materi-
als, especially As2S3. We derived a model based on
lubrication theory and an optically induced pressure due
to interacting induced dipoles. The model was used to
obtain simulation results, which were found to agree well
with literature data.
We thank Ashley Prescott for drawing Fig. 1. We grate-

fully acknowledge support by NSF through the MIRTHE
Center (Grant No. EEC-0540832).
Appendix.—To derive Eq. (2) we begin with Eq. (1), in

which the vi’s are components of the velocity vector, � is
the mass density, P is the total pressure, f is the body
force, and � is the kinematic viscosity. Applying a thin-film
approximation sanctions the replacement of P with its
value at the surface since there is little depth over which
the pressure can change. At the surface, P is comprised
of surface tension, S, and the photoinduced pressure, P.
Surface tension is traditionally taken to be proportional
to surface curvature. Symbolically,

S ¼ �
d2h
dx2

½1þ ðdhdxÞ2�3=2
� �

d2h

dx2
; (A1)

where h is the (spatially varying) thickness of the film, and
the last step is justified by the thin film approximation since
this condition implies dh=dx � 1. We note that since the
illumination is modulated only along the x axis, the photo-
induced pressure can vary only with x. The thin film
approximation thus leads to

P � PðxÞ � �
@2h

@x2
: (A2)

In addition, we assume there are no body forces so f ¼ 0.
Combining this information with Eq. (1) leads to
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Following the analyses of Ledoyen et al. and Pimputkar
et al., it is possible to drop all the terms on the left-hand
side because they turn out to be small in practice [15–17].
Doing so yields

FIG. 4 (color online). The model’s fit to a section of a surface
relief profile data from [3]. Results by the model agree well with
experimental measurements, both in amplitude and frequency.

FIG. 5 (color online). Fluence dependence of maximum sur-
face relief amplitude, with measurements data taken from [3].
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where � ¼ �� is the dynamic viscosity.
Equation (A4) is solvable subject to the following con-

straints and boundary conditions. First, we have

@vx

@x
þ @vz

@z
¼ 0; (A5)

which is the continuity equation, derived from incompres-
sibility and conservation of mass. Next, assuming perfect
adhesion to the substrate implies

vx ¼ vz ¼ 0 at z ¼ 0; (A6)

where z ¼ 0 is the film-substrate interface. At the free
surface of the film, the shear stress along z goes to zero
[14,17]. Symbolically,

@vx

@z
¼ 0 at z ¼ h: (A7)

Finally, the z velocity at the free surface is the rate of
change in the height. This can be represented as

vz ¼ @h

@t
at z ¼ h: (A8)

Since the right-hand side of Eq. (A4) has no z dependence,
the whole equation can be integrated with respect to z.
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where C1 is an integration constant. Applying the shear
stress boundary condition [Eq. (A7)] yields C1. Thus,
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Integrating with respect to z again gives
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The application of Eq. (A6) shows that C2 is 0. Taking the
derivative of both sides with respect to x and applying the
continuity condition of Eq. (A5) yields
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This too can be integrated with respect to z.
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Equation (A6) reveals C3 to be 0 as well.
Finally, setting z ¼ h and applying the last boundary

condition [Eq. (A8)] gives
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