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Two-dimensional simulations, both Vlasov and particle-in-cell, are presented that show the evolution of

the field and electron distribution of finite-width, nonlinear electron plasma waves. The intrinsically

intertwined effects of self-focusing and dissipation of field energy caused by electron trapping are studied

in simulated systems that are hundreds of wavelengths long in the transverse direction but only one

wavelength long and periodic in the propagation direction. From various initial wave states, both the width

at focus �m relative to the initial width �0 and the maximum field amplitude at focus are shown to be a

function of the growth rate of the transverse modulational instability �TPMI divided by the loss rate of field

energy �E to electrons escaping the trapping region. With dissipation included, an amplitude threshold for

self-focusing �TPMI=�E�1 is found that supports the analysis of Rose [Phys. Plasmas 12, 012318 (2005)].
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The kinetic evolution of large-amplitude electron
plasma waves (EPWs) continues to play a central role in
fundamental theory and experiments of wave-particle
interactions [1–6] as well as in inertial confinement fusion
(ICF) and space plasmas. In ICF, large-amplitude EPWs
reflect the laser light incident on ignition hohlraums via
stimulated Raman scattering (SRS), the backscatter of an
intense coherent light wave into a lower frequency light
wave by an EPW. SRS is the primary laser energy loss
mechanism in ICF experiments at the National Ignition
Facility where, on some beams, up to 30% of the light
is backscattered [7–9]. In space plasmas, the stability of
large-amplitude EPWs excited via two-stream instabilities
with a class of trapped electron distributions referred to as
electron phase space holes is of great interest [10–12].

In laser-driven ICF, EPWs are driven predominantly in
spatially localized laser speckles with approximate width
given by the f=number of the focusing optics (f=8 for
the National Ignition Facility) times the laser wavelength
(351 nm) and thus are transversely localized by the excita-
tion process. As proposed by Rose [4,13], these finite-width
EPWs can self-focus due to the trapped particle modula-
tional instability (TPMI) with growth rate �TPMI. With
particle-in-cell (PIC) simulations, several authors have
studied SRS in finite-width laser speckles and have found
structure consistent with kinetic self-focusing of EPWs
[14–17]. However, in these studies, the myriad of physical
processes at play can mask the essential features of EPW
evolution and make scaling studies nigh impossible. More
carefully controlled simulations of finite-width EPWs with
an external driver have been performed with Vlasov [18]
as well as PIC [19] codes. Whereas the PIC studies [19]
found that the physical process dominating the transverse

evolution of the EPWwas local damping of the EPWs at the
transverse edge by transiting electrons, the Vlasov studies
[18] found that the EPWs self-focused, provided the wave
amplitude and transverse width were large enough.
The single process of electron trapping and detrapping

in a finite-width EPW leads to both self-focusing and loss
of field energy. We show in this Letter that the condition
�TPMI=�E � 1, where �E is the field energy dissipation
rate, sets a threshold for EPW self-focusing in qualitative
agreement with Ref. [4]. The self-focusing leads to an
increase of EPW amplitude on axis as the EPW narrows
transversely. The phase space evolution of trapped and
detrapped electrons as the EPW narrows clearly illustrates
the energy loss dynamics. We find that the loss rate
�E / �sl, where the side loss rate �sl ¼ ��1

sl ¼ ve=�0, �0

is the FWHM of the external driver field intensity, and

ve ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Te=me

p
is the electron thermal velocity with Te (me)

the electron temperature (mass).
Both PIC and Vlasov codes are used to study externally

driven, two-dimensional (2D) EPWs with k�De ¼ 1=3,
a value typical for EPWs driven by SRS [7–9]; here,
k ¼ 2�=�0 and �0 are, respectively, the EPW wave num-
ber and wavelength along the propagation direction x and
�De ¼ ve=!pe is the electron Debye length with !pe the

electron plasma frequency. The driver frequency !0 �
1:2!pe is chosen to satisfy the linear kinetic dispersion

relation, with the resulting EPW phase velocity vp�3:6ve.

The linear Landau damping rate �0 ¼ 0:026!pe is an order

of magnitude larger than the rate at which we find the field
energy to decay. Note that Refs. [20,21] showed that
the dominant detrapping mechanism for EPWs localized
in laser speckles is side loss, not collisions, justifying our
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use of collisionless simulations. We furthermore neglect
ion dynamics, since TPMI is faster than processes such as
ponderomotive self-focusing that require ions.

The PIC simulations were done with the 2D electrostatic
PIC code BEPS, based on the UCLA parallel particle-in-cell
(UPIC) framework [22]; the 2D Vlasov simulations used
LOKI [23]. The two independent techniques give added

confidence in the results: PIC simulations have a long
history in simulating these processes, while Vlasov codes
with no statistical noise allow clearer simulation of smaller
wave amplitudes. The system length Lx ¼ �0 along x. The
BEPS and LOKI boundary conditions for electrostatic fields

were periodic in all directions. The boundary conditions
were periodic for the LOKI distribution function and the
BEPS electrons in x. At the lateral boundaries in LOKI,

outgoing boundary conditions were applied; BEPS used
wide enough lateral simulation domains that the periodic
boundary conditions did not affect the wave evolution.
BEPS simulations used 16 384 particles per cell; LOKI’s

typical maximum velocity was 7–8ve. We normalize dis-
tance to �De and electric fields to Te=ðe�DeÞ.

Traveling waves with approximately Gaussian trans-
verse profile were excited via an externally imposed
electric field whose amplitude remained constant for
!pet ¼ 100 with rise and fall times of one wave period

[24]. The waves were driven to potential amplitudes rang-
ing over 10�3<e�0=Te<1, where the subscript 0 denotes
the maximum amplitude of the EPW reached at time t0
near when the driver was turned off. Using the electron

bounce frequency, given by!be ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�0=me

p
, we find the

approximate number of bounce periods !bet0=2� & 5 for
all amplitudes considered. Thus, one might expect the
distribution and the frequency shift to be in the sudden
limit [21,25,26], although the actual distributions in Vlasov
simulations often are closer to the adiabatic limit. In our
interpretation of the simulation results, we take the non-

linear frequency shift from trapped electrons �!=!pe ¼
�0:04

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�0=Te

p
, a value close to the adiabatic one.

In all simulations, the waves were driven to large enough

amplitudes to exceed the bounce number threshold Nb ¼
ð�0=�DeÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�0=Te

p ðk�De=2�Þ, established in Ref. [20], for
the wave to trap electrons and modify the dispersion and
damping rate [27]. We chose EPW driver widths in the
range �0 � 100–600�De based on the typical laser speckle

width, which is many Debye lengths wide: f�L=�De ¼
142f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ne=ðNcTe;keVÞ

q
� 360 for f ¼ 8, Te;keV ¼ 1, �L ¼

351 nm is the laser wavelength, and Ne=Nc ¼ 0:1, where
Ne is the electron density and Nc is the critical density.
Similarly to Nb, the threshold parameter shown in this

Letter �TPMI=�E / �0

ffiffiffiffiffiffi
�0

p
; both are a measure of trapping

versus detrapping rates.
A characteristic example of the wave evolution is shown

in Fig. 1 for a wave with e�0=Te ¼ 0:21 and width� (field

intensity FWHM) at t0 of �0 ¼ 532�De. Figure 1(a) shows
the wave as the driver is turning off with nearly planar wave
fronts. At !pet ¼ 1000, the wave fronts shown in Fig. 1(b)

are clearly bowed and the focusing has begun even though
the maximumwave amplitude has not increased. At!pet ¼
1800, shown in Fig. 1(c), the wave is nearing its minimum
width and its maximum amplitude. Subsequently, the wave
diffracts and the wave amplitude decreases. Figure 1(d)
shows the maximum amplitude on axis (y ¼ 0) as a func-
tion of time. The maximum is reached at tm � 1800=!pe;

we denote the width at tm as �m.
Also shown in Figs. 1(e)–1(g) is the evolution of the

distribution of electrons that interact with the field at times
corresponding to snapshots of the field in Figs. 1(a)–1(c).
The distribution has been integrated over x and vy < 0

in order to highlight key features, hence the apparent
asymmetry in y. Electrons are introduced at the boundary
y ¼ þLy with a Maxwell-Boltzmann distribution.

Figures 1(e)–1(g) reveal how electrons enter the wave
transversely, gain energy as they become trapped in xwhile
advecting on average at ve, and then exit transversely with
a non-Maxwell-Boltzmann distribution in vx. The exiting
distribution has more energy than the entering one, which
results in a field energy loss rate �E. This process, which is
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FIG. 1 (color online). Snapshots of the rightward propagating
wave potential �ðx; yÞ for the LOKI simulation with e�0=Te ¼
0:21 and �0 ¼ 532�De at the times (a) !pet ¼ 100, (b) 1000,

and (c) 1800. The field is symmetric about y ¼ 0. In (d), the time
evolution of the maximum field Ex, which reaches a maximum at
!petm ¼ 1800, is shown. In (e)–(g), snapshots at !pet ¼ 100,

1000, and 1800, respectively, are shown of the distribution as a
function of y=�De and 2:6< vx=ve < 4:6; the distribution is
averaged over x and all vy < 0. The phase velocity ¼ 3:6ve is

indicated by the red triangles. The dashed red lines show the

edge of the trapping region in vx at vp � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�max=me

p
.
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accentuated as the field focuses transversely, limits the
amplitude of the field on axis.

A number of authors [4,13,18,28] have modeled EPWs
with an enveloped nonlinear Schrödinger equation. From
the EPW dispersion relation and with the eikonal expan-

sion � ¼ ð1=2Þ ~� expð�i!0tþ ik0xÞ þ c:c:, one obtains

ð@t þ vg@x � iDx@
2
x � iD?@2y þ i�!þ �Þ ~� ¼ ��dðy; tÞ;

(1)

where @nj � @n=@jn, ~� is a slowly varying envelope, vg is

the group velocity, �! is an amplitude-dependent, negative
frequency shift [25,26], � is a heuristic damping term, �d

is the driving potential, � is a coupling constant, and (for
the Bohm-Gross dispersion relation and the kinetic EPW
dispersion)Dx andD? are positive. Coupling to harmonics
is assumed negligible as they play an insignificant role in
the simulations.

We chose to study transverse phenomena without the
modulational sideband instability [29,30] by choosing

Lx ¼ �0. With that restriction, @x ~� ¼ 0. Then, as shown
by Rose [4,13], one finds a transverse modulational or self-
focusing instability with maximum growth rate �TPMI ¼
j�!j=4, provided D?�!< 0. With � > 0 to account for
the loss of field energy to escaping trapped electrons, linear
stability analysis finds growth only above the threshold

�TPMI > �. Solving Eq. (1) with @x ~� ¼ 0 and � ¼ 0, we
find similar behavior to Fig. 1(d) but with the maximum
value of Ex �4� its initial value, whereas the field on
axis in the simulation [Fig. 1(c)] is only �1:5� larger,
clearly illustrating the significant effect of damping.
Correspondingly, �m=�0 ¼ 0:03 is narrower in the model
equation without damping compared to �m=�0 ¼ 0:09 in
the simulation. Unlike ponderomotive self-focusing, here
the resonant wave-particle interaction leads both to a
focusing via a transversely varying frequency shift �!
and to a loss rate � ¼ �E.

To quantify the effect of dissipation on the EPWs, we
measure the rate that the total field energy decays as the
escaping electrons take energy away. Figure 2(a) shows the
time history of the total field energy for two LOKI simula-
tions: one just above the threshold for self-focusing and
one just below. There are two phases to the loss rate. The
early rate �E decreases as a function of increasing initial
field amplitude; the late rate is much faster. For amplitudes
far below threshold, there is one fast rate. The rates were
determined by fitting to an exponential decay as shown by
the examples in Fig. 2(a) by the blue and green lines.

Reference [18] showed that the field energy decreased
with time at a rate proportional to the side loss rate
�sl ¼ ve=�0. The damping rate �E normalized to �sl is
plotted as a function of e�0=Te in Fig. 2(b). Results
for several �0 are shown. The decay rates for the early
phase �E are proportional to �sl ¼ ��1

sl with a jump in value

at e�0=Te * 0:01. Note that above e�0=Te ’ 0:01, the

BEPS rates are larger (by at most a factor of 2) than the

LOKI rates.

To illustrate the time evolution of the EPW width,

we compute �E2ðy; tÞ ¼ L�1
x

RLx

0 dxjExðx; y; tÞj2. Figure 3

shows �E2ðy; tÞ for simulations with two different initial
amplitudes. Figure 3(a) shows an EPW that damps and
transversely localizes before self-focusing affects the wave
profile. Figure 3(b) is sufficiently wide and intense to reach
a narrow focus limited by diffraction and side loss at tm,
after which the field energy is rapidly depleted. By
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FIG. 2 (color online). (a) For �0 ¼ 532�De, the temporal
evolution of total field energy (normalized to the maximum
value) is shown for e�0=Te ¼ 0:025 (�TPMI=�E ¼ 2:35) and
e�0=Te ¼ 0:014 (�TPMI=�E ¼ 0:74). Exponential fits are shown
to the early and late decays by the blue and green lines,
respectively. Vertical dashed black and red lines indicate tm for
e�0=Te ¼ 0:025 and e�0=Te ¼ 0:014, respectively. (b) The
energy loss rate �E normalized to the side loss time �sl for
several initial FWHM widths �0=�De. Diamond and square
markers denote LOKI and BEPS simulations, respectively. The
vertical dashed line indicates the threshold value of e�0=Te.
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FIG. 3 (color online). �E2ðy; tÞ for �0 ¼ 532�De and
(a) e�0=Te � 0:014 (b) e�0=Te � 0:21. (b) From the LOKI

simulation shown in Fig. 1. In (c) and (d), the time dependence
of the maximum field on axis (solid line and right-hand-side
axis) and � (dashed line and left-hand-side axis) are shown for
the same conditions as in (a) and (b), respectively. The blue lines
in (c) and (d) show the linear fit to � used to determine the
localization velocity Vl.
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assuming that � ¼ �t1 þ Vlðt� t1Þ, we compute the lo-

calization velocity Vl=ve, where t1 is a time several bounce
times after the drive is turned off and before tm.

Figure 4(a) shows the dependence of Vl on e�0=Te for a
variety of initial EPW widths �0. For low amplitudes, Vl

depends on�0, which indicates that diffraction is important
for the narrower widths [18]. For high amplitudes, Vl is
independent of �0 and approaches the electron thermal
velocity in magnitude. That is, an untrapped electron needs
a significant transverse velocity to become trapped. On the
other hand, trapped electrons are detrapped more quickly
than the side loss rate would predict. We also found that Vl

is sensitive to k�De (not shown). However, the ratio ofVl=ve

to �TPMI=!pe as a function of e�0=Te is approximately

constant for different k�De; this scaling of the localization
velocity applies at least over the range 0:25< k�De < 0:4.

We define a threshold parameter �TPMI=�E calculated
using �E from Fig. 2(b). Three important features of
EPW self-focusing are shown to be a function of this
parameter: the time that the field achieves its maximum
value on axis (tm), the peak value of the maximum field on
axis (Epeak), and the width of the field intensity (�m) at tm.

Figures 4(b)–4(d) show that these quantities, normalized
and scaled, are nearly independent of �0 and depend only
on the value of the threshold parameter �TPMI=�E. Plotted
against �TPMI=�E, one sees that tm � t0 jumps above 0
when the self-focusing threshold is exceeded, that is,

�TPMI=�E * 1. Figure 4(c) shows how Epeak increases

above Et0 as a function of �TPMI=�E. Below threshold,
the field on axis after a bounce period or two only
decreases after the drive is turned off. Figure 4(d) shows
that the EPW narrows to a relative width �m=�0 at tm that
is independent of �0 and scales as one expects from an
instability; that is, it has a threshold and reaches a limit
determined in this case by diffraction and side loss. For
all cases considered, Epeak has a smaller value with a

larger width �m at focus which occurs at an earlier time
tm in the simulation than in the model Eq. (1) with � ¼ 0.
Below and near threshold, EPWs with smaller �0 localize
less proportionately. This might be expected because, as
noted in Ref. [18], diffraction opposes localization and
the electron distribution in the trapping region tries to
evolve to a more uniform distribution transversely as the
electrons travel laterally. These effects are less important
for bigger �0.
The LOKI and BEPS results are in substantial agreement.

The differences are currently under investigation. For ex-
ample, the reader may notice from Fig. 4(a) that the BEPS

simulations extend to larger initial wave amplitudes�0 and
thus extend to larger �TPMI. Nonetheless, the LOKI simula-
tions achieve larger values of the parameter �TPMI=�E in
Figs. 4(b)–4(d) because of the smaller value of �E as shown
in Fig. 2(b). Note also that Epeak achieves larger values

at later times tm in LOKI than in BEPS simulations. That
behavior is also consistent with solutions of Eq. (1) with
smaller damping rates. In part, the differences also arise
from growth of filaments from the larger initial transverse
nonuniformities in BEPS which can cause the field to break
into multiple foci at large amplitude, thus limiting the peak
amplitude achievable in a single focus. The most physical
result depends on the actual physical EPW initial fluctua-
tion levels which neither simulation method attempts to
address in this Letter.
For �TPMI=�E > 1, the overall effect on SRS should be

to spatially limit the backscatter to a smaller fraction of
the incident light power than a fluid simulation, since the
maximum wave amplitude is limited to small increases
while the transverse size decreases substantially. Thus,
the overlap of the speckle-wide light waves and the
narrower EPWs in space is reduced.
We have presented two-dimensional kinetic simulations

showing the self-focusing and dissipation of finite-width,
nonlinear EPWs. We measured the rate at which the trans-
verse wave envelope decreases in width (the transverse
localization velocity) and the rate at which the total field
energy decreases. The threshold for the onset of self-
focusing was shown to depend on �TPMI=�E, in agreement
with Rose [4]. The dispersion relation for EPWs in Ref. [4]
assumes that phase matching is maintained with the light
waves. As a consequence, Ref. [4] also predicts stability
for k�De > 0:46 and stability for even lower values of k�De

as the wave amplitude e�0=Te increases. In our
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simulations with the free wave dispersion for EPWs, we
find neither a stability region for k�De > 0:46 nor a second
stability region for large e�0=Te.
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