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Stimulated Raman scattering of an ultraintense laser pulse in plasmas is studied by perturbatively

including the leading order term of the Landau-Lifshitz radiation reaction force in the equation of motion

for plasma electrons. In this approximation, the radiation reaction force causes a phase shift in nonlinear

current densities that drive the two Raman sidebands (anti-Stokes and Stokes waves), manifesting itself

into the nonlinear mixing of two sidebands. This mixing results in a strong enhancement in the growth of

the forward Raman scattering instability.
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Parametric instabilities of a laser pulse in a plasma are
important due to their applications in the areas of laser-driven
fusion and laser wakefield acceleration and have been inves-
tigated for decades [1–4]. StimulatedRaman scattering (SRS)
is one of the prominent examples of parametric instabilities,
carrying significant importance on account of being respon-
sible for the generation of hot electrons in laser-driven fusion
[1,2] and plasma wave excitation in laser wakefield accelera-
tion [4]. In SRS, the incident pump laser decays either into
two forward moving daughter electromagnetic waves (for-
ward Raman scattering) or into a single backward moving
daughter electromagneticwave (backwardRaman scattering)
and a plasma wave. The daughter waves have their frequen-
cies upshifted (anti-Stokes waves) and downshifted (Stokes
wave) from the pump laser by the magnitude which equals
the excited plasma wave frequency.

At high laser intensities Il � 1019 W=cm2, the growth
rate of the parametric instabilities becomes smaller due to
the relativistic Lorentz factor [3]. However, at ultrahigh laser
intensities Il � 1022 W=cm2, the role of the radiation reac-
tion force becomes important, too [5,6]. Such ultraintense
laser systems are on the anvil after the commissioning of
the Extreme Light Infrastructure (ELI) Project in Europe [7].
Because of radiation reaction force, the laser pulse suffers
damping while propagating in a plasma. This damping of
the laser pulse makes it vulnerable to plasma instabilities
in following ways. First, as the laser loses energy due to the
radiation reaction force, it facilitates, apart from the usual
parametric decay processes, the availability of an additional
source of free energy for perturbations to grow in the plasma.
Moreover, its effective intensity decreases, which lowers the
relativistic Lorentz factor. Second, the phase shift, caused by
the radiation reaction force, in the nonlinear current densities
can mediate the mixing of the scattered daughter electro-
magnetic waves which can now grow faster, utilizing effi-
ciently the additional channel of the laser energy depletion.
This necessitates the inclusion of the effect of the radiation
reaction force in the theoretical formalism of the parametric
instabilities in the plasma.

In this Letter, we include the effect of the radiation
reaction force and study the SRS of an ultraintense laser
pulse in a plasma, treating the radiation reaction force effects
in the classical electrodynamics regime where quantum
effects arising due to photon recoil and spin are negligible
[5]. For this to be valid, the wavelength and magnitude of
the external electromagnetic field in the instantaneous rest
frame of the electron must satisfy � � �C and E � Ecr,
where �C ¼ 3:9� 10�11 cm is the Compton wavelength
and Ecr ¼ 1:3� 1016 V=cm is the critical field of quantum
electrodynamics [5]. For the laser intensities planned in the
ELI Project Il � 1022–23 W=cm2 [7], these two criteria can
be fulfilled. In the classical electrodynamics regime, the
Landau-Lifshitz radiation reaction force correctly accounts
for the radiation emitted by a relativistic charged particle [8].
We incorporate the leading order term of the Landau-Lifshitz
radiation reaction force perturbatively in the equation of
motion, focusing on the phase slippage caused by it on the
quiver momentum of oscillating electrons. This phase shift
due to the radiation reaction force tends to enhance the
growth rate of the SRS instability. The growth of the forward
Raman scattering (FRS) instability gets strongly enhanced
while the growth of the backward Raman scattering (BRS)
instability does not experience a strong enhancement due
to the radiation reaction force.
We consider the propagation of a circularly polarized

(CP) pump laser along the ẑ direction in an underdense
plasma with uniform plasma electron density n0. Ions are
assumed to be at rest as their motion leads to the appear-
ance of an additional ion mode instability which does not
couple with the SRS instability [9]. The equation of motion
for an electron in the laser field including the leading order
term of the Landau-Lifshitz radiation reaction force is
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where � ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p
, e is the electronic charge,me is

the electron mass, and c is the velocity of the light in
vacuum. The other terms of the Landau-Lifshitz radiation
reaction force are 1=� times smaller than the leading order
term [8] and can be ignored. We first solve this equation
of motion by ignoring the radiation reaction term and by
expressing the electric and magnetic fields in potentials
as E ¼ �r�� @A=@ct, B ¼ r�A. In a 1D approxi-
mation valid when r0 � �0 (where r0 is the spot size and
�0 is the wavelength of the pump laser pulse), this yields
the transverse momentum and z component of motion
as p? ¼ eA=c, and @vz=@t ¼ erz�=ðme�0Þ � e2rzjAj2=
ð2m2

e�
2
0c

2Þ, where �0 ¼ ð1þ a20=2Þ1=2, a0 ¼ eA0=ðmec
2Þ,

A ¼ A0e
ic 0=2þ c:c, A0 ¼ �A0, � ¼ ðx̂þ iŷÞ= ffiffiffi

2
p

,
c 0 ¼ k0z�!0t, and !0 and k0 are the carrier frequency
and wave vector of the pump laser, respectively [3,10].
A plane monochromatic CP light has rjA0j2 ¼ 0, so it
does not cause any charge separation, leading to no com-
ponent of velocity in the ẑ direction. This is the so-called
Akhiezer-Polovin solution for a purely transverse mono-
chromatic CP light in plasmas [3,11,12]. However,
the scattering of the laser pulse leads to the total vector

potential of the form A ¼ ½A0e
ic 0 þ �Aþeik?�x?eicþ þ

�A��e�ik?�x?e�ic ��	=2þ c:c:, where �Aþ ¼ ��Aþ,
�A�� ¼ ��A��, �Aþ, and �A� represent the anti-Stokes
and the Stokes waves, respectively ðj�A
j � jA0jÞ; cþ¼
ðkzþk0Þz�ð!þ!0Þt and c �� ¼ ðkz � k0Þz� ð!� �!0Þt
[3,10]. The scattered vector potential written above, for all
! and k, represents modulational interaction in plasmas.
Beating of the Stokes and the anti-Stokes waves with
the pump laser leads to the density perturbation �n=n0
(plasma wave excitation). It can be estimated after solving
the equation of continuity and the Poisson equation
together with the z component of the equation of motion,
and reads as �~n¼ðe2k2z=2m2

e�
2
0c

2DeÞðA�
0�AþþA0�A�Þ,
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,

�n=n0 ¼ �~neic eik?�x?=2þ c:c:, and c � cþ � c 0 �
c� þ c 0 ¼ kzz�!t [3,10]. It causes an axial component
of velocity and momentum �z ¼ vz=c � 1 and pz � p?,
respectively.

Now, we use the above solutions for transverse and
longitudinal components of momenta to simplify the
radiation reaction term in Eq. (1) and solve the full
equation of motion to include the radiation reaction
force perturbatively. Writing the CP laser pulse as
A ¼ A?ðx?; z; tÞeic 0=2þ c:c:, with its amplitude varying
slowly, i.e., j@A?=@tj � j!0A?j, j@A?=@zj � jk0A?j,
j�j � jAj, !2

p=�!
2
0 � 1, and �¼ð1þe2jAj2=m2

ec
4Þ1=2,

we get the transverse component of the quiver mom-
entum as
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7, �z¼ð!=kzcÞ�~neik?�x?eic =
2þc:c:, and we have assumed��jAj2 � 1, which is valid

for laser intensities Il � 1023 W=cm2, for which the influ-
ence of the radiation reaction force has to be taken into
account. One may also note that we do not consider the
effect of radiation reaction on plasma oscillations. This is
justified since j�j � jAj and the radiation reaction effects
associated with the plasma wave are negligible in the case
of the collinear movement of plasma electrons and the
plasma wave. One can solve Eq. (2) for the equilibrium
and the scattered vector potentials by substituting A and
expressing the transverse component of the quiver momen-
tum in an analogous manner as the vector potential A, e.g.,

p? ¼ ½p0e
ic 0 þ pþeik?�x?eicþ þ p��e�ik?�x?e�ic ��	=2þ

c:c:, where pþ and p� have similar polarizations as
the anti-Stokes and the Stokes modes. The wave equation
for the vector potential after the density perturbation
n ¼ n0 þ �n by the ponderomotive force becomes
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On collecting the terms containing eic 0 , Eq. (3) yields
the dispersion relation for the equilibrium vector potential
as !2

0 ¼ k20c
2 þ!02

p ð1� i�jA0j2�0=2Þ. It is evident from
the dispersion relation that the radiation reaction term
causes damping of the pump laser field. This damping
can be incorporated either by defining a frequency or a
wave number shift in the pump laser [13]. We define a
frequency shift of the form !0 ¼ !0r � i�!0, �!0�!0r

with the frequency shift �!0 being �!0¼!02
p "�0a

2
0=2!0r,

where " ¼ re!0r=3c, re ¼ e2=mec
2 is the classical radius

of the electron, and without the loss of generality we have
assumed a0 ¼ a�0. This frequency shift should be less than

the growth rate; otherwise, the growth of the SRS does
not occur and the assumption of the locally constant laser
field in deriving the growth rates remains no longer valid.
Similarly collecting the terms containing eic
eik?�x? in
Eq. (3), we getDþ�Aþ¼Rþð�Aþþ�A�Þ andD��A� ¼
R�ð�Aþ þ �A�Þ, yielding the dispersion relation�

Rþ
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Because of the presence of the radiation reaction term,
coupling between the Stokes and the anti-Stokes modes
is modified (Rþ � R�), and this form of dispersion
relation differs from the dispersion relation derived before
[1–3,10]. Without the radiation reaction term " ¼ 0 and
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Rþ ¼ R� � R, the dispersion relation assumes the same
form as derived before [1–3,10].

For calculating the growth rate of the FRS in a low-
density plasma !0

p � !0r, one has to take into account

both the Stokes and the anti-Stokes waves, as they are both
the resonant modes of the plasma [14]. After substituting
for the pump laser frequency shift �!0 and ignoring the
finite k? for the FRS, we get D
 ¼ ð!
!0rÞ2 �!02

p �
ðkz 
 k0Þ2c2. On writing ! ¼ !0

p þ i�FRS, where �FRS is

the growth rate of the FRS instability, and assuming
that both the sidebands (Stokes and anti-Stokes) are
resonant, i.e., D
�ð!
!0rÞ2�!02

p �ðkz
k0Þ2c2¼0,

we have D
 � 2i�FRSð!0
p 
!0rÞ and De � 2i!0

p�FRS.

Substituting these expressions in the dispersion relation
and taking k2zc

2 � !02
p and !02

p �!2
0r � �!2

0r, we obtain,

in the weakly coupled regime �FRS � !0
p, the growth rate

which is well approximated by the following expression
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In the case of no radiation reaction force " ¼ 0, the rela-
tivistic growth rate of the FRS instability is same as derived
before [3,10]. Two solutions corresponding to 
 signs
represent growing and decaying modes, respectively. The
decaying mode is damped faster and induces no experi-
mentally detectable signatures in the laser pulse spectrum.
The effective growth rate of the FRS instability is GFRS ¼
�FRS � �!0. Figure 1 shows the growth rate of the FRS
with (upper panel) and without (lower panel) the radiation
reaction force. One can immediately notice that the radia-
tion reaction force significantly enhances the growth rate of
the FRS at lower plasma densities�p � !p=!0r � 1 and

higher laser amplitude a0 � 1, also apparent from Eq. (6).
For �p � 0:02 and a0 ¼ 300, there is an order of magni-

tude enhancement in the growth rate. The radiation reac-
tion term also contributes substantially to the growth
enhancement of the FRS at higher plasma densities. In
this case, the growth rate is also higher since it is directly
proportional to the square of the plasma frequency.
The strong growth enhancement of the FRS instability is
counterintuitive, as the radiation reaction force is generally
considered as a damping force similar to collisions in
plasmas. This enhancement occurs due to the mixing
between the Stokes and the anti-Stokes modes mediated
by the radiation reaction force. In the absence of the
radiation reaction force, nonlinear currents that drive the
Stokes and the anti-Stokes modes have opposite polariza-
tions. Consequently, the phase shift induced by the radia-
tion reaction force—as seen from the expression of R
 in

Eq. (5)—is opposite for these modes. This results in the
interaction between the nonlinear current terms, culminat-
ing into phase shift accumulation in Eq. (4). We term the
nonlinear mixing of the two modes due to the radiation
reaction force as the manifestation of this accumulation
of phase shifts, and it leads to the enhanced growth rate of
the FRS instability. One can also intuitively imagine this
growth enhancement occurring due to the availability of
an additional channel of radiation-reaction-force-induced
laser energy decay and its efficient utilization by both the
Stokes and the anti-Stokes modes.
Since this growth enhancement depends strongly on the

resonant excitation of both the Stokes and the anti-Stokes
modes, it is instructive to estimate the conditions under
which both modes are excited and also to see if the radia-
tion reaction term enhances the growth of the FRS even
when only the Stokes mode is excited in the plasma.
Kinematical considerations always allow excitation of
the Stokes mode (D� ¼ 0), however, only in a tenuous
plasma (!0

p � !0r) both the Stokes and the anti-Stokes

modes can be simultaneously excited. Assuming that the
Stokes mode is excited, one can calculate the frequency
mismatch for the anti-Stokes mode which is defined as

�!m ¼ !0
p þ!0r � ½!02

p þ c2ðk0p þ k0Þ2 þDþ	1=2, and

it turns out to be �!m ¼ �!03
p =!

2
0r þ 9!04

p =4!
3
0r. If this

frequency mismatch is smaller than the growth rate
�FRS � �!0 of the FRS instability, then one has to retain
both the modes in the dispersion relation while deriving
the growth rate of the FRS. Figure 2 depicts the frequency
mismatch normalized by the growth rate of the FRS
j�!m=ð�FRS � �!0Þj, with a0 and �p � !p=!0r. One
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FIG. 1 (color online). Normalized growth rate ð�FRS �
�!0Þ=!0r of the FRS as a function of the normalized plasma
density �p � !p=!0r and normalized pump laser amplitude

a0 ¼ eA0=mc2 (a) including the radiation reaction force and
(b) without the radiation reaction force. The normalized growth
rate is plotted on a log10 scale.
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can clearly see that the frequency mismatch for the anti-
Stokes mode is usually smaller than the growth rate of
the FRS for all values of �p and a0. This necessitates

including both the Stokes and the anti-Stokes modes in the
analysis of the FRS. The frequency mismatch is indeed
much smaller than the growth rate at lower plasma den-
sities and higher a0. This is also the parameter regime
where strong enhancement to the FRS growth rate occurs.
Hence, both the Stokes and the anti-Stokes modes are
resonantly excited in the plasma, leading to strong
enhancement of the FRS instability due to the radiation
reaction force. If one considers only the Stokes mode in the
dispersion relation, the growth rate enhancement due to
the radiation reaction force is marginal, as the nonlinear
mixing of the two Raman sidebands is absent in this case.
The growth rate enhancement in this case occurs due to the
phase shift caused by the radiation reaction force, which
maintains the laser energy transfer to the Stokes mode for
a longer time. The BRS is essentially a three-wave decay
process, as the anti-Stokes wave is not the resonant mode
of the plasma. For the BRS, we have kz ’ 2k0 and the
instability is always in the strongly coupled regime, i.e.,
�BRS � !0

p (but �BRS � !0r). One can expand De and

D� as De � ��2
BRS and D� � �2i�BRS!0r, and we get

the growth rate of the BRS

�BRS ¼
ffiffiffi
3

p
2

�
!0r

2!p

�
1=3 !pa

2=3
0

ð1þ a20=2Þ1=2
�
1þ "a20�0

3
ffiffiffi
3

p
�
: (7)

The effective growth rate of the BRS instability is GBRS ¼
�BRS � �!0. The radiation reaction term enhances the
growth rate of the BRS; however, the enhancement is not
strong. Unlike the case of the FRS, no mixing between the

anti-Stokes and the Stokes modes is possible in this case
due to the absence of the resonant excitation of the former.
Again, for " ¼ 0, one recovers the known growth rate of
the BRS [3,10].
To summarize, we have investigated the influence of the

leading order term of the Landau-Lifshitz radiation reaction
force on the growth of parametric instabilities, namely, the
SRS in plasmas. The radiation reaction force strongly
enhances the growth of the FRS only when both the
Stokes and the anti-Stokes modes are the resonant modes
of the plasma. The growths of the FRS—with only the
resonant Stokes wave excitation—and the BRS are also
enhanced by the inclusion of the radiation reaction force,
although the enhancement is a minor one due to the absence
of the radiation-reaction-force-induced nonlinearmixing of
the anti-Stokes and the Stokes modes. Thus, the radiation
reaction force appears to strongly enhance the growth of the
SRS involving four-wave decay interaction. These results
are important for the ELI Project, as the ultraintense laser
pulses are expected to create a dense plasma by strongly
ionizing the ambient air and also by producing the electron-
positron pairs. The subsequent interaction of this plasma
with the laser pulse can lead to the onset of parametric
instabilities again—now counterintuitively due to the radi-
ation reaction force—leading to significant change in the
frequency spectra and shapes of these extremely intense
short laser pulses. Moreover, contrary to the scheme of the
nonlinear Compton scattering of a counterpropagating rela-
tivistic electron in a strong laser field aiming to discern the
signatures of the radiation reaction force on the spectra of
high-energy gamma-ray photons [5], enhanced FRS due
to the radiation reaction force provides an alternative
way to detect the radiation reaction effects on the spectra
of low-energy optical photons.
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