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3Department of Physics, McGill University, Montreal, Quebec H3A 2T8, Canada
(Received 22 April 2013; published 6 September 2013)

We introduce and characterize two different measures which quantify the level of synchronization of

coupled continuous variable quantum systems. The two measures allow us to extend to the quantum

domain the notions of complete and phase synchronization. The Heisenberg principle sets a universal

bound to complete synchronization. The measure of phase synchronization is, in principle, unbounded;

however, in the absence of quantum resources (e.g., squeezing) the synchronization level is bounded

below a certain threshold. We elucidate some interesting connections between entanglement and

synchronization and, finally, discuss an application based on quantum optomechanical systems.
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In the 17th century, Huygens noticed that the oscillations
of two pendulum clocks with a common support tend to
synchronize [Fig. 1(a)] [1]. Since then, analogous phe-
nomena have been observed in a large variety of different
contexts, e.g., neuron networks, chemical reactions, heart
cells, fireflies, etc. [2]. They are all instances of what it is
called the spontaneous synchronization effect where two or
more systems, in the complete absence of any external
time-dependent driving force, tend to synchronize their
motion solely due to their mutual coupling. The emergence
of spontaneous synchronization in so many different physi-
cal settings encouraged its investigation within classical
nonlinear dynamical systems. Here, given the time evolu-
tion of two dynamical variables, such as the position of two
pendula, standard methods exist to verify whether their
motion is synchronized [2]. For quantum systems, how-
ever, the same approaches cannot be straightforwardly
extended due to the absence of a clear notion of phase-
space trajectories. The aim of this work is to address this
problem, developing a consistent and quantitative theory of
synchronization for continuous variable (CV) systems
evolving in the quantum regime [3]. To this aim we intro-
duce two different quantum measures of synchronization,
extrapolating them from notions of complete and phase
synchronization introduced for classical models. We will
show that quantum mechanics sets bounds on the achiev-
able level of synchronization between two CV systems and
we will discuss the relationship between entanglement and
synchronization. We finally apply our approach for study-
ing the dynamics of coupled optomechanical systems [4,5].

In the quantum domain synchronization has been
studied in various contexts, such as quantum information
protocols [6], two-level systems [7], and stochastic systems
[8]. While our measures could also, in principle, be
extended to these cases, our endeavor is specifically
framed in the research line investigating the spontaneous
synchronization of micro- and nanomechanical systems

[9–17]. Recent experimental advances allow us to realize
optomechanical arrays composed of two or more coupled
mechanical resonators controlled close to their quantum
regime by laser driving [18–21]. Such devices have all the
properties (nonlinear dynamics, limit cycles, etc.) that are
necessary for the emergence of spontaneous synchroniza-
tion [9,22] and indeed some first experimental evidences of
this effect have been found [14,15,17].
Quantum synchronization measures.—In a purely

classical setting, synchronization is mostly studied in the
context of autonomous nonlinear systems undergoing limit
cycles or chaotic evolution (linear systems being usually
excluded because they converge to constant or unstable
solutions). In this scenario one can identify different forms
of synchronization [2]. Complete synchronization is
achieved when (say) two subsystems S1 and S2, initialized
into independent configurations, acquire identical trajecto-
ries under the effects of mutual interactions. Specifically,
given two CV classical systems characterized by the
(dimensionless) canonical variables q1ðtÞ, p1ðtÞ and q2ðtÞ,

1 2 n

1 2 n

mechanical
modes

optical
modes

laser
driving

(a) (b)

FIG. 1 (color online). Huygens’ original sketch [1] of two
synchronizing pendulum clocks (a) and the quantum mechanical
analogue consisting of two (or more) coupled optomechanical
systems (b). Here, mechanical resonators are driven into self-
sustained oscillations by the nonlinear radiation pressure force of
independent optical modes. A weak mechanical interaction is
responsible for the spontaneous synchronization of the limit
cycles. All symbols are defined in the main text.
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p2ðtÞ describing the evolution of S1 and S2 in phase
space, complete synchronization is reached when

the quantities q�ðtÞ :¼ ½q1ðtÞ � q2ðtÞ�=
ffiffiffi
2

p
and p�ðtÞ :¼

½p1ðtÞ � p2ðtÞ�=
ffiffiffi
2

p
asymptotically vanish for large enough

times [23]. Phase synchronization is instead achieved
when, under the same conditions detailed above, only the
phases ’jðtÞ¼arctan½pjðtÞ=qjðtÞ� are locked, i.e., when the
quantity ’�ðtÞ :¼ ’1ðtÞ � ’2ðtÞ asymptotically converges
to a constant phase shift ’0 2 ½0; 2��.

One can already foresee that extending the above con-
cepts to quantum mechanical systems is not straightfor-
ward and that some fundamental limits could exist that
prevent the exact fulfillment of the conditions given above.
In particular, identifying the dimensionless quantities qjðtÞ,
pjðtÞ as quadrature operators obeying the canonical

commutation rules ½qjðtÞ; pj0 ðtÞ� ¼ i�jj0 [3], the relative

coordinates q�ðtÞ and p�ðtÞ will correspond to generalized
position and momentum operators of the same (anti-
symmetric) mode of the system. Accordingly, the uncer-
tainty principle will now prevent the possibility of exactly
achieving the condition required by classical complete
synchronization.

To turn this into a quantitative statement, we identify
q�ðtÞ and p�ðtÞ as synchronization errors and introduce
the following figure of merit

ScðtÞ :¼ hq�ðtÞ2 þ p�ðtÞ2i�1; (1)

gauging the level of quantum complete synchronization
attained by the system (here, h� � �i implies taking the
expectation value with respect to the density matrix of the
quantum system). We then observe that the Heisenberg
principle requires hq�ðtÞ2ihp�ðtÞ2i � 1=4 and hence

ScðtÞ � 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihq�ðtÞ2ihp�ðtÞ2i

p � 1; (2)

which sets a universal limit to the complete synchronization
two CV systems can reach. On the contrary, in a purely
classical theory, ScðtÞ is, in principle, unbounded [24].
Indeed, in real units the right-hand side of the bound scales
as @�1, diverging in the limit @ ! 0.

A small value of ScðtÞ can have two possible origins: the
mean values of q�ðtÞ and p�ðtÞ are not exactly zero, and/or
the variances of such operators are large. The former
situation can be interpreted as a classical systematic error
[25], while the latter is due to the influence of thermal and
quantum noise. The classical systematic error can be easily
excluded from the measure of synchronization by using the
same expression of Eq. (1) but after the application of the
change of variables:

q�ðtÞ!q�ðtÞ�hq�ðtÞi; p�ðtÞ!p�ðtÞ�hp�ðtÞi: (3)

This gives a relative measure of synchronization which
is always larger than the previous absolute one and
which may be preferable whenever the aim is that of selec-
tively investigating purely quantum mechanical effects.

Obviously, the bound of Eq. (2) holds also for this relative
measure.
Constructing a quantum analogue of the phase synchro-

nization condition is more demanding due to the contro-
versial nature of the quantum phase operator(s); see, e.g.,
Ref. [26]. In principle, one could use a phase-difference
operator such as the one proposed in [27]; however, we
adopt a more pragmatic approach which allows us to target
departures from the ideal (classical) synchronization con-
dition, due to quantum fluctuations. To do so, we write the

operator ajðtÞ :¼ ½qjðtÞ þ ipjðtÞ�=
ffiffiffi
2

p
of the jth system as

ajðtÞ ¼ ½rjðtÞ þ a0jðtÞ�ei’jðtÞ; (4)

where rjðtÞ and ’jðtÞ are the amplitude and phase of the

expectation value of ajðtÞ, i.e., hajðtÞi ¼ rjðtÞei’jðtÞ. With

this choice, the Hermitian and anti-Hermitian part of

a0jðtÞ ¼ ½q0jðtÞ þ ip0
jðtÞ�=

ffiffiffi
2

p
can now be interpreted as fluc-

tuations of the amplitude and of the phase, respectively
[indeed, this is the reason why in quantum optics q0jðtÞ and
p0
jðtÞ are often called amplitude and phase quadratures].

If two CV systems are on average synchronized such that
the phases of ha1ðtÞi and of ha2ðtÞi are locked, then the
phase shift with respect to this locking condition can be

associated with the operator p0�ðtÞ ¼ ½p0
1ðtÞ � p0

2ðtÞ�=
ffiffiffi
2

p
.

A measure of quantum phase synchronization can then be
obtained through the quantity

SpðtÞ :¼ 1

2
hp0�ðtÞ2i�1: (5)

Differently from the measure (1), Sp can be, in principle,

arbitrarily large. Nonetheless, if two CV quantum systems
evolve in time such that their P function [3,28] is always
positive (quantum optics notion of classicality), then per-
fect phase synchronization is impossible and one has

positive P function ) SpðtÞ � 1: (6)

Indeed, a value of hp0�ðtÞ2i below 1=2 implies the existence
of collective squeezing, and so the impossibility of a phase-
space representation of the state through a positive P
function. Notice that, with respect to the fundamental
bound (2), the threshold (6) is much weaker since it can
be overcome with squeezed states.
Furthermore, the specific structure of the limit cycles

associated with the average quantities rjðtÞ and ’jðtÞ may

lead to additional bounds for Sp. If, for example, (i) the

system under consideration exhibits mean values quantities
hajðtÞi converging to approximately circular limit cycles in

the phase space, (ii) the noise operating in the system is not
phase sensitive (i.e., is invariant for phase-space rotations),
and (iii) the interaction potential between the two systems

is of the form Hint ¼ ��ða1ay2 þ a2a
y
1 Þ, then it is reason-

able to conjecture that hp0�ðtÞ2i � hq0�ðtÞ2i. This, together
with the Heisenberg principle, leads to the bound

SpðtÞ � ScðtÞ � 1: (7)
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While referring to the Supplemental Material [29] for an
heuristic derivation of Eq. (7), we remark that such
inequality is consistent with the results shown later on
optomechanical systems.

Quantum correlations and synchronization.—
Synchronization and entanglement are both associated
with the presence of correlations between two or more
systems. It is thus natural to ask if, in the quantum regime,
there is a strong interplay between the two effects. Quite
surprisingly, however, it turns out that, according to our
measures, the stationary state of two CV systems can
possess maximum amount of complete or phase synchro-
nization without being necessarily entangled. For instance,
a systemconverging to two factorized coherent states evolv-
ing in time such that ha1ðtÞi ¼ ha2ðtÞi exhibits maximum
complete synchronization (Sc ¼ 1) but has no entangle-
ment. Similarly, consider two locally squeezed states
rotating in phase space such that ha1ðtÞi ¼ ha2ðtÞi and
hp0

1ðtÞ2i ¼ hp0
2ðtÞ2i ¼ �, with p0

k being the quadrature or-

thogonal to the phase-space cycle of subsystem k as defined
in Eq. (4) (said in simpler words, these are two squeezed
states moving like synchronized clock hands in phase
space). This state has arbitrary high phase synchronization
Sp ¼ 1

2 �
�1, but it is clearly not entangled. Entanglement

appears hence to enforce correlations which are qualita-
tively different from those required to yield high values for
ScðtÞ andSpðtÞ. A better insight into this can be obtained by

considering the very precursor of all CV entangled states,
i.e., the Einstein-Podolsky-Rosen (EPR) state [30], which
describes the ideal scenario of two systems having the same
positions but opposite momenta. It is thus clear that
synchronization requires different constraints which could
instead have a relationship with other measures of quantum
correlations, such as quantum discord (see, e.g., our suc-
cessive results on optomechanical systems). We conclude
this section with an open question on the converse problem:
What kind of synchronization phenomenon corresponds in
the quantum limit to EPR correlations? EPR entanglement
could be identified as a mixture of complete and antisynch-
ronization, i.e., q1ðtÞ ¼ q2ðtÞ and p1ðtÞ¼�p2ðtÞ. Recently,
this unconventional regime, called mixed synchronization,
has been introduced and observed in classical nonlinear
systems [31], but whether this concept is relevant and
extendible in the quantum domain is still unexplored.

Measures and bounds at work.—Optomechanical de-
vices [4,5] provide the perfect setting where our measures
for synchronization can be directly applied. We thus iden-
tify S1 and S2 with two approximately identical mechanical
resonators [see Fig. 1(b)] coupled to independent cavity
optical modes (needed to induce self-sustained limit
cycles) and mutually interacting through a phonon tunnel-
ing term [9] of intensity �:

H ¼ X

j¼1;2

½��ja
y
j aj þ!jb

y
j bj � gayj ajðbj þ byj Þ

þ iEðaj � ayj Þ� ��ðb1by2 þ by2b1Þ: (8)

In this expression, for j ¼ 1, 2, aj and bj are the optical

and mechanical annihilation operators, !j are the mecha-

nical frequencies, �j are the optical detunings, g is the

optomechanical coupling constant, while E is the laser
intensity which drives the optical cavities (@ ¼ 1). For
simplicity, g and E are assumed to be equal in both systems
while !1 and !2 can be slightly different. Dissipative
effects are included adopting the Heisenberg picture and
writing the following quantum Langevin equations [32]:

_aj ¼ ½��þ i�j þ igðbj þ byj Þ�aj þ Eþ ffiffiffiffiffiffi
2�

p
ainj ;

_bj ¼ ½��� i!j�bj þ igayj aj þ i�b3�j þ
ffiffiffiffiffiffi
2�

p
binj :

(9)

Here, � and � are, respectively, the optical and
mechanical damping rates while ainj and binj are the

input bath operators. These are assumed to be white
Gaussian fields obeying standard correlation
relations, hainj ðtÞyainj0 ðt0Þ þ ainj0 ðt0Þainj ðtÞyi ¼ �jj0�ðt� t0Þ
and hbinj ðtÞybinj0 ðt0Þþbinj0 ðt0Þbinj ðtÞyi¼ð2nbþ1Þ�jj0�ðt� t0Þ,
where nb¼½expð@!j

kBT
Þ�1��1 is the mean occupation num-

ber of the mechanical baths which gauges the temperature
T of the system [32] (since we are only interested in the
situation in which!1 ’ !2, the parameter nb can be safely
taken to be equal for both oscillators).
The operators OðtÞ in Eq. (9) can be expressed as sums

of mean values hOðtÞi plus fluctuation terms O0ðtÞ; i.e., we
writeOðtÞ ¼ hOðtÞi þO0ðtÞ. In a semiclassical approxima-
tion [32] we determine the expectation values hOðtÞi in
terms of a set of classical nonlinear differential equations
and, as a second step, we linearize the quantum Langevin
equations for the operatorsO0ðtÞ. Setting �j ¼ !j (driving

detuning) and choosing the laser amplitude E of Eq. (8)
large enough, we make sure that such solutions yield limit
cycles as classical steady state configurations (see, e.g.,
[33]). In this regime the mechanical and optical fields
acquire large coherent amplitudes, and therefore we expect
the linearization procedure to be justified. A more general
and exact treatment of the nonlinear dynamics could be
achieved by using stochastic methods like those presented
in Refs. [34,35].
Quantum fluctuations are obtained by computing the

covariance matrix CðtÞ, with entries given by Ci;‘ðtÞ ¼
hRiðtÞR‘ðtÞy þ R‘ðtÞyRiðtÞi=2, the expectation value being
taken on the initial state and Ri being the components of

the vector R ¼ ða01; a0y1 ; b01; b0y1 ; a02; a0y2 ; b02; b0y2 Þ. In particu-

lar, this gives us direct access to the mechanical variances
hq�ðtÞ2i and hp�ðtÞ2i, which define the complete synchro-
nization level via Eq. (1). By applying the linearization
procedure, we implicitly performed the change of variables
corresponding to Eq. (3) and so we automatically excluded
the systematic synchronization error due to slightly differ-
ent average trajectories. As a consequence, the only source
of disturbance bounding our measure of synchronization
will be quantum (or thermal) fluctuations.
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Estimating phase synchronization as in Eq. (5) requires
instead a further step as the latter has been defined
with respect to a reference frame rotating with the phases
of the average trajectories; see Eq. (4). This corresponds
to a diagonal and unitary operation on R, built up on
the phases ’a1ðtÞ ¼ argha1ðtÞi, ’a2ðtÞ ¼ argha2ðtÞi, etc.,
of the classical orbits: i.e., R ! R0 ¼ UðtÞR with UðtÞ¼
diag½e�i’a1

ðtÞ;ei’a1
ðtÞ; . . .�. The associated covariance matrix

is C0ðtÞ ¼ UðtÞCðtÞUðtÞy, from which we can directly
extract the mechanical variance hp02�ðtÞi entering Eq. (5).

A simulation of the complete and phase synchronization
between the mechanical modes is plotted in Fig. 2(a) using
realistic values for the parameters [4,5] (see caption for
details). After an initial transient, the system reaches a
periodic steady state in which ScðtÞ and SpðtÞ are signifi-

cantly larger then zero, implying that both complete and
phase synchronization take place in the system. Their value
is consistent with the fundamental limit (2) imposed by the
Heisenberg principle and with the heuristic bound (7)
presented in the previous section. Indeed we numerically
find that quantum squeezing in the p0�ðtÞ quadrature,
needed to overcome the nonclassicality threshold (6), is
absent in the system. Figures 2(b) and 2(c) report instead
the behavior of the time-averaged measures of complete

and phase synchronization for different values of the
coupling constant and of the bath temperature. We vary
� from zero [36] to a maximum threshold above which the
classical equations are perturbed too much, destroying the
limit cycles.
Finally, we have checked if quantum correlations are

present in the system verifying that, consistently with the
difference between entanglement and synchronization
detailed in the previous section, for many choices of the
parameters entanglement negativity is always zero even
though synchronization is reached. On the contrary, a non-
zero level of Gaussian quantum discord [37] [Fig. 2(b)]
between the two mechanical modes is observed for all
values of � that lead to synchronization. Still, our data
are not sufficient to clarify the functional relationship
between discord and synchronization (if it exists).
The synchronization observed between the oscillators is

expected to emerge also when more than two parties are
present in the setup. In particular, we focus on the case of a
(closed) chain formed by N optomechanical systems with
first neighbor interactions [the Hamiltonian being the natu-
ral generalization of (8) with uniform parameters]. As
before, we enforce the driving detuning condition � ¼ !
and set the laser intensities E in order that each optome-
chanical system converges to a stable limit cycle. Once
these prerequisites are fulfilled, we linearize the dynamics
around the classical steady state, which is assumed to be
the same (synchronized) in each site; i.e., hajðtÞi ¼ �ðtÞ
and hbjðtÞi ¼ �ðtÞ for all j. This corresponds to a mean-

field approximation applied only to the classical dynamics,
while the fluctuation terms a0j and b0j can be treated exactly
(without mean field) since the associated Hamiltonian is
quadratic. Figure 2(d) reports the results obtained for two
mechanical modes separated by h lattice steps: we notice
that the synchronization level among the various elements
persists even if an exponential decay in h is present
(a behavior which is consistent with the one-dimensional
topology induced by the selected interactions).
Summary.—We have quantitatively studied the phe-

nomenon of spontaneous synchronization in the setting of
coupled CV quantum systems. We have shown that quan-
tum mechanics sets universal limits to the level of synchro-
nization and discussed the relationship between this
phenomenon and the emergence of quantum correlations.
Finally, we have analyzed the spontaneous synchronization
of optomechanical arrays driven into self-sustained oscil-
lations. A large number of open aspects are worth being
further investigated, amongwhich are the interplay between
quantum correlations and synchronization, the application
of this theory to other physical systems such as coupled
optical cavities [16], self-locking lasers [38], etc., and the
interpretation of synchronization as a useful resource for
quantum communication and quantum control.
This work has been supported by IP-SIQS, PRIN-MIUR

and SNS (Giovani Ricercatori 2013). N.D. acknowledges
support from CIFAR.
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FIG. 2 (color online). (a) Simulation of the complete (blue)
and phase (green) synchronization measures (1) and (5) between
the mechanical resonators as functions of time (in units of
	 ¼ 2�=!1). The dashed lines indicate the corresponding
time-averaged asymptotic values, i.e., the quantities �Sx ¼
limT!1 1

T

R
T
0 SxðtÞdt for x ¼ c, p. Setting !1 ¼ 1 as a reference

unit of frequency, the other physical parameters that have been
used in the simulation are !2 ¼ 1:005, � ¼ 0:005, �j ¼ !j,

� ¼ 0:15, g ¼ 0:005, � ¼ 0:02, nb ¼ 0, and E ¼ 320.
(b) Time-averaged complete (circles) and phase (squares) syn-
chronization and Gaussian discord DG (diamonds) as functions
of the coupling constant �. (c) Time-averaged synchronization
measures as functions of the bath mean phonon number nb.
(d) Synchronization between two arbitrary mechanical modes of
a chain of 20 coupled optomechanical systems as a function of
the lattice distance h. All subsystems are assumed to have the
same mechanical frequency ! ¼ 1.
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