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Dipartimento di Fisica, Università di Roma ‘‘La Sapienza’’, Piazzale Aldo Moro 2, 00185 Roma, EU
INFN, Sezione Roma1, Piazzale Aldo Moro 2, 00185 Roma, EU

(Received 26 April 2013; revised manuscript received 1 July 2013; published 3 September 2013)

Over the last decade, a growing number of quantum-gravity researchers has been looking for

opportunities for the first ever experimental evidence of a Planck-length quantum property of spacetime.

These studies are usually based on the analysis of some candidate indirect implications of spacetime

quantization, such as a possible curvature of momentum space. Some recent proposals have raised hope

that we might also gain direct experimental access to quantum properties of spacetime, by finding

evidence of limitations to the measurability of the center-of-mass coordinates of some macroscopic

bodies. However, I here observe that the arguments that originally led to speculating about spacetime

quantization do not apply to the localization of the center of mass of a macroscopic body. And, I also

analyze some popular formalizations of the notion of quantum spacetime, finding that when the

quantization of spacetime is Planckian for the constituent particles, then for the center of mass of a

composite macroscopic body the quantization of spacetime is much weaker than Planckian. These results

suggest that the center-of-mass observables of macroscopic bodies should not provide good opportunities

for uncovering quantum properties of spacetime. And, they also raise some conceptual challenges for

theories of mechanics in quantum spacetime, in which, for example, free protons and free atoms should

feel the effects of spacetime quantization differently.
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Introduction and motivation.—Traditionally, the
quantum-gravity problem was studied as a mere technical
exercise, assuming that it might be impossible to find
experimental evidence of the minute effects produced by
the characteristic length scale of quantum gravity, expected
to be of the order of the Planck length ‘P ’ 10�35 m. This
changed over the last decade as a result of a growing
number of studies (see, e.g., Refs. [1–11]) showing that
evidence of Planck-length quantum properties of space-
time might be within our experimental reach if we exploit
some candidate indirectmanifestations of spacetime quan-
tization. An intuitive example of candidate indirect mani-
festations of spacetime quantization is found in results
showing that certain ways to introduce the Planck length
as a scale of spacetime quantization admit a dual picture in
which the Planck length also plays the role of the scale of
curvature of momentum space, with implications for rela-
tivistic kinematics (see, e.g., Refs. [11,12]).

It would of course be important to also find opportunities
for observing Planck-length spacetime quantization
directly. And, according to the studies recently reported
in Refs. [13,14], this might be possible, at least in the sense
that we can achieve Planckian accuracy in measurements
pertaining the center-of-mass coordinates of some macro-
scopic bodies The study reported by Pikovski et al. in
Ref. [13] focuses on the center-of-mass motion of a me-
chanical oscillator, while the study reported by Bekenstein
in Ref. [14] focuses on the center-of-mass motion of a
macroscopic dielectric block traversed by a single optical
photon. The study reported by Pikovski et al. in Ref. [13]
focuses on the center-of-mass motion of a mechanical

oscillator, while the study reported by Bekenstein in
Ref. [14] focuses on the center-of-mass motion of a macro-
scopic dielectric block traversed by a single optical photon.
(In addition, the more recent proposal reported in Ref. [15],
of which I became aware during the last stages of final-
ization of this Letter, is similar to the proposals in
Refs. [13,14] from the viewpoint here adopted: Ref. [15]
seeks evidence of spacetime quantization by studying the
longitudinal normal modes of a 3-meter long aluminum bar
weighing 2.3 tons.)
In attempting to assess the likelihood of success of these

proposals, I noticed that they involve small momentum
transfer from a low-energy photon to a macroscopic
body, the body being describable fully within the ‘‘non-
relativistic limit’’ (small velocities, where Galilean relativ-
ity holds). And, I find that the arguments that inspired
quantum-gravity research on Planck-length spacetime
quantization do not apply to such interactions. The current
consensus among theorists (see, e.g., the reviews in
Refs. [16,17]) is that spacetime quantization is needed
because any attempt to localize a particle with Planckian
accuracy requires concentrating energy of order of the
inverse of the Planck length within a Planck-length-size
region, and in such situations, our present understanding of
gravitational phenomena suggests that a black hole should
form, rendering the localization procedure meaningless.
The procedures proposed in Refs. [13,14] for Planck-
length accuracy in the control of the center-of-mass
position of a macroscopic body evidently do not involve
any particularly high concentration of energy in small
regions.
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The hope that the center of mass of a macroscopic body
might be subject to the same Planck-length quantum prop-
erties of spacetime expected for fundamental particles is
therefore evidently based on an implicit inductive argu-
ment: the necessity of Planck-length spacetime quantiza-
tion arises exclusively in arguments involving fundamental
particles, but once that is accommodated in the theory,
perhaps by some (unproven and unknown) consistency
criterion, the Planck-length quantum properties of space-
time would also affect the center of mass of a macroscopic
body. To my knowledge, this huge extrapolation is not
confirmed by any known results of quantum-spacetime
research. On the contrary, I here provide a simple argument
suggesting that this extrapolation is incorrect. I consider a
few of the most popular models being studied in the
quantum-spacetime literature, and I probe conceptually
the issue here at stake by using a simplified characteriza-
tion of the center of mass of a body composed of N
constituent particles. I take as center-of-mass coordinates
the observables X, Y, and Z, with

X¼ 1

N

XN
n¼1

xn; Y ¼ 1

N

XN
n¼1

yn; Z¼ 1

N

XN
n¼1

zn (1)

(where of course xn, yn, and zn are the coordinates of the
nth composing particle), and I take as center-of-mass
momentum the observables Px, Py, and Pz, with

Px ¼
XN
n¼1

px;n; Py ¼
XN
n¼1

py;n; Pz ¼
XN
n¼1

pz;n (2)

(where of course px;n, py;n, and pz;n are the momentum

components of the nth composing particle).
This simplified description of a macroscopic body is

sufficient for my purposes since the relevant phenomeno-
logical opportunities are for the center of mass of macro-
scopic bodies in the nonrelativistic regime and my main
objective is to provide a counterexample to the conjecture
that Planck-length quantum properties of spacetime apply
in an undifferentiated way to fundamental particles and to
the center of mass of macroscopic bodies. I shall show that
the conjecture is false by showing that it does not apply to
macroscopic bodies whose center-of-mass motion is char-
acterized by Eqs. (1) and (2). And, Eqs. (1) and (2) are
appropriate for macroscopic bodies whose constituents all
have the same mass and whose center-of-mass degrees of
freedom decouple from the other degrees of freedom.

Results for classical spacetime and Lie-algebra quantum
spacetime.—Let me first recall the mechanism through
which the description (1) and (2) gives satisfactory results
within ordinary quantum mechanics, in classical space-
time, where the only nontrivial commutator is Heisenberg’s

½x; px� ¼ i@

(focusing for simplicity on the x direction).
Evidently, the Heisenberg commutator also applies to a

body’s center of mass, described by Eqs. (1) and (2):

½X; Px� ¼
�
1

N

XN
n¼1

xn;
XN
m¼1

px;m

�
¼ 1

N

XN
n¼1

XN
m¼1

�n;mi@

¼ 1

N

XN
n¼1

i@ ¼ i@: (3)

My next application is already nontrivial and novel but
nonetheless provides further elements in support of the
usefulness of the conceptual probe I am using, centered
on Eqs. (1) and (2). For this, I consider a class of quantum-
spacetime pictures involving noncommutativity of coordi-
nates of Lie-algebra type [18–20]:

½r�; r�� ¼ i‘���� r�;

with r1 ¼ x, r2 ¼ y, and r3 ¼ z. (I focus on spatial non-
commutativity, which suffices for establishing the issue for
macroscopic bodies which is here of interest.)
This type of noncommutativity of coordinates is here

particularly significant since it is the only case where the
literature does provide preliminary evidence that macro-
scopic bodies might be affected by Planck-length features
differently from their constituent particles. These are argu-
ments focusing on the description of macroscopic bodies
when momentum space is curved or anyway affected by
nonlinearities (see Ref. [21] and references therein).
Lie-algebra spacetimes are known to be dual to momentum
spaces with curved geometry [11,12], and one of the
implications is that the laws of conservation of momentum
for fundamental particles are Planck-length deformed.
Applying the relevant deformed conservation laws to the
constituents of a macroscopic body can give a net result
for collisions such that momentum conservation for
macroscopic-body total momentum is affected by weaker
corrections than momentum conservation for the particle
constituents. Specifically, Ref. [21] focused on a situation
such that before and after the momentum exchange, the
bodies are composed of particles in exactly rigid motion
and found that the curvature of momentum space was felt
by the macroscopic body, not as set by the Planck length
but rather as set by the Planck length divided by the
number N of particle constituents.
Even though they applied only to rather special contexts

[rigid motion is an assumption stronger than the ones
required by my Eqs. (1) and (2)] and they concerned
momentum-space nonlinearities rather than spacetime fuz-
ziness, these previous arguments could already hint at the
possibility that in Lie-algebra spacetimes, the effective
Planck length should be rescaled for macroscopic bodies.
My simple ‘‘conceptual probe’’ produces for the noncom-
mutativity of coordinates results which are indeed consis-
tent with the intuition emerging from those previous
studies on the momentum-space side. To see this, let me
consider the case of a commutator of type

½x; y� ¼ i‘r�;
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with � taking any value among 1, 2, 3 (so that essentially I
consider at once cases of the type ½x; y� ¼ i‘x and of the
type ½x; y� ¼ i‘z).

Applying ½x; y� ¼ i‘r� to the constituent particles of a
macroscopic body, one then finds for the center-of-mass
coordinates described in Eq. (1) the result

½X; Y� ¼
�
1

N

XN
n¼1

xn;
1

N

XN
m¼1

ym

�
¼ 1

N2

XN
n¼1

XN
m¼1

�n;mi‘r
�
n

¼ 1

N2

XN
n¼1

i‘r�n ¼ i
‘

N
R�; (4)

where of course R� � N�1
P

N
n¼1 r

�
n .

Evidently, Eq. (4) shows that the effects of Lie-algebra
coordinate noncommutativity for the center of mass of
macroscopic bodies are scaled down by a factor of 1=N.
While this could be expected intuitively on the basis of the
dual momentum-space picture described in Ref. [21], it is
noteworthy that my approach provides a consistent picture
of the quantum-spacetime aspects.

Results for other quantum-spacetime pictures.—I shall
now show that my perspective on center-of-mass degrees
of freedom of macroscopic bodies has applicability that
goes beyond the specific context of Lie-algebra spacetime
noncommutativity. My next example is ‘‘Moyal noncom-
mutativity,’’ with coordinate-independent commutators,
such as

½x; y� ¼ i‘2M: (5)

This is perhaps the most studied candidate scenario for the
quantization of spacetime [22,23], and there is no result in
the literature anticipating that macroscopic bodies should
be affected by Moyal noncommutativity differently from
their constituents. (Note however that about a decade ago,
as his novel approach to quantum gravity [24] started to
earn wider appreciation, Volovik raised the possibility that
this might be the case in the context of private discussions
with advocates of Moyal noncommutativity.) The applica-
bility of my thesis to Moyal noncommutativity is easily
checked by using (1) for center-of-mass coordinates with
the constituents governed by noncommutativity (5):

½X; Y� ¼
�
1

N

XN
n¼1

xn;
1

N

XN
m¼1

ym

�
¼ 1

N2

XN
n¼1

XN
m¼1

�n;mi‘
2
M

¼ 1

N2

XN
n¼1

i‘2M ¼ i

�
‘Mffiffiffiffi
N

p
�
2
: (6)

Therefore, also for the Moyal case, the noncommutativity
of center-of-mass coordinates should be weaker than the
noncommutativity of the coordinates of the constituents.
Specifically, the Moyal noncommutativity length scale ‘M
gets reduced by a factor of 1=

ffiffiffiffi
N

p
.

The results I found in Eqs. (4) and (6) show that for
pictures of quantum spacetime based on spacetime

noncommutativity the center of mass of a macroscopic
body must have quantum-spacetime properties different
from those of its constituents. It would be interesting to
check whether the same holds in the popular picture of
quantum spacetime given by the Loop-Quantum-Gravity
approach, but such an analysis is not within the reach of our
present understanding of that complex formalism [25].
However, I can verify the applicability of my thesis to
another much-studied class of quantum-spacetime pic-
tures, not based on spacetime noncommutativity. This is
the one centered on the possibility that the Planck length
intervenes in modifications of the Heisenberg commutator
of the general type [26,27]

½x; p� ¼ i@ð1� �0pþ �2p2Þ: (7)

Even with commuting coordinates, these modifications of
the Heisenberg commutator produce spacetime quantiza-
tion. The key role for this is played by the parameter �2 of
the quadratic term. The standard Heisenberg commutator
still allows localizing a particle sharply at a point (�x ! 0)
if �p ! 1, i.e., if all information on the conjugate mo-
mentum is given up. But, for �2 � 0, Eq. (7) produces a
seesaw formula [26,27] such that �x receives a novel
contribution proportional to �p in addition to the standard
Heisenberg term going like 1=�p, in such a way that the
coordinate x cannot ever be measured sharply, as required
for a quantum-spacetime picture.
Of some interest for my thesis is also the perspective

given in Ref. [27], advocating the specific choice of �0 ¼ �
in Eq. (7), partly because of its consistency (in the sense of
Jacobi identities) with commutativity of coordinates
among themselves and of momenta among themselves.
Keeping these facts in mind, it is then interesting to look

at the properties of a center of mass described by Eqs. (1)
and (2) when the constituents are governed by Eq. (7):

½X; Px� ¼
�
1

N

XN
n¼1

xn;
XN
m¼1

px;m

�

¼ 1

N

XN
n¼1

XN
m¼1

�n;mi@ð1� �0px;m þ �2p2
x;mÞ

¼ i@

�
1� �0

N
Px þ �2

N2
P2
x þ �2

N

XN
n¼1

�
p2
x;n � P2

x

N2

��

’ i@

�
1� �0

N
Px þ �2

N2
P2
x

�
; (8)

where for the last approximate equality, I restricted my
attention to macroscopic bodies in (quasi-)rigid motion, as
with those of interest for the mentioned experimental
proposals put forward in Refs. [13,14], so that one can
expect for every n that px;n ’ Px=N. Evidently, at least in

this rigid-motion limit, also for quantum spacetimes char-
acterizable in terms of Eq. (7), I am finding that the center
of mass of a macroscopic body should be affected more
weakly than its constituents by spacetime quantization.
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Notably, my argument suggests that in the rigid-motion
limit, the prescription �0 ¼ � advocated in Ref. [27] could
apply both to fundamental particles and to the center of
mass of a macroscopic body (but in the macroscopic case,
both �0 and � are reduced by 1=N).

Implications and outlook.—The analysis I here reported
should put to rest any further temptations of relying on the
unquestioned assumption that the center-of-mass degrees
of freedom of a macroscopic body be affected by quantum-
spacetime effects just as much as the microscopic constit-
uents of the body. I have provided counterexamples to that
assumption which, because of the nature of my conceptual
probe centered on Eqs. (1) and (2), are robust at least for
the center of mass of bodies in quasirigid motion (like a
solid at low temperatures). Let me also stress that it does
not take a particularly macroscopic system for my con-
cerns to be applicable. Think of just bound systems of two
identical particles, with coordinate vectors ~r1 and ~r2 and
with bounding potential Vðj~r1 � ~r2jÞ affecting only the
relative motion: for such systems, Eqs. (1) and (2) are
correct, with N ¼ 2.

While I am proposing that simplistic assumptions
about the properties of macroscopic bodies in a quantum
spacetime must be abandoned for good, I believe it
would be incorrect to give up on the idea of discovering
quantum-spacetime effects through observations of macro-
scopic bodies. After all (if only the development of obser-
vational techniques had had a different history), quantum
mechanics itself could have been discovered by studying
white dwarfs, rather than through observations at atomic
and subatomic scales. There might be an opportunity out
there for uncovering a manifestation of quantum spacetime
through studies of some specific macroscopic bodies. But,
in order for us to capitalize from such opportunities, it will
be necessary to move much beyond simple-minded as-
sumptions about general properties of center-of-mass
degrees of freedom. Macroscopic bodies have a huge vari-
ety of properties, and only some special ones among them
under some suitable special conditions (and for observ-
ables not necessarily linked to the center-of-mass degrees
of freedom) could manifest quantum-spacetime properties
tangibly.

One could try with macroscopic bodies for which the
center-of-mass degrees of freedom do not fully decouple
from the internal degrees of freedom. In such cases, the
arguments I here reported would be inapplicable, but of
course this does not mean that some naive guess work is
then allowed. One should handle the tough challenge of
modeling such bodies and figure out under which condi-
tions the Planck-scale effects could be tangible. And, it will
be necessary to achieve rigorous quantifications of the
implications for a given macroscopic body of interest: in
phenomenology, negative results are also important since
they allow us to set limits on the parameters of candidate
new theories, but that is only possible if the quantification

of predicted effects is rigorously derived from the defining
parameters of the theory.
Similar considerations can be inspired by the contribu-

tions of type p2
x;n � P2

x=N
2 neglected for the last equality in

Eq. (8) under the assumption of quasi-rigid motion. My
Eq. (8) also shows that for ‘‘deformed-Heisenberg quantum
spacetimes’’ one could have an amplification of the
quantum-spacetime effects when the body is not quasi-rigid
and the context is such that terms of type p2

x;n � P2
x=N

2 are

large, as it happens in particular for bodies at very high
temperatures. This is not the case of the macroscopic
bodies considered in the phenomenological proposals of
Refs. [13,14], but could inspire some new phenomenologi-
cal proposals. In pursuing such opportunities one should
take into account that the properties of the center of mass
of bodies in such extreme regimes would still be different
from the ones of the constituents. For appropriately
large departures from quasi-rigid motion in deformed-
Heisenberg quantum spacetimes the Planck-scale proper-
ties of the center of mass of a macroscopic body could
actually be stronger than those of the constituents.
It is also possible that for some models of quantum

spacetime, the starting points of my analysis, constituted
by Eqs. (1) and (2), are inapplicable even when the center-
of-mass degrees of freedom cleanly decouple from internal
degrees of freedom. For one of the cases here considered,
the one of Lie-algebra noncommutative spacetime, this is
already established in the literature, although it does not
affect my analysis. Indeed, in Lie-algebra spacetimes, the
law of composition of momenta is expected to be deformed
but the law of composition of spacetime coordinates is
undeformed, as first shown in Ref. [18]. Interestingly, the
derivation of my main result for Lie-algebra spacetimes,
Eq. (4), requires exclusively Eq. (1), so it is not affected by
this issue. Requirement (2) is crucial for my main result
concerning ‘‘deformed-Heisenberg noncommutativity,’’
Eq. (8), but the available literature on those quantum
spacetimes does not advocate any deformation of compo-
sition laws (see, e.g., Refs. [26,27]). Similarly, the avail-
able literature on ‘‘Moyal noncommutativity,’’ for which
my main result is Eq. (6), does not advocate [22,23] any
modification of Eqs. (1) and (2). So, the analysis I here
reported is not challenged by any available results on
composition laws in quantum spacetimes. However, this
issue must be monitored since the understanding of known
quantum-spacetime models is still in progress. Moreover,
new models might at some point be proposed with
deformed composition laws such that my argument would
not then be applicable to them.
While my main focus here was on phenomenological

prospects, in closing I should also emphasize some severe
technical challenges that, according to my analysis, must
be faced in theory work on the quantum-spacetime idea.
A first challenge comes from the fact that my analysis
shows that macroscopic bodies have quantum-spacetime
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properties different from those of their constituents, but it
gives no indication of which constituents are those ‘‘fun-
damental enough’’ to be affected by the full strength of
Planck-scale effects. Think, for example, of molecules: my
analysis suggests that molecules are affected more weakly
by quantum-spacetime effects than the atoms within them,
but should the Planck-length magnitude of quantum-
spacetime effects be assumed for atoms or for protons
and neutrons within the nuclei of atoms? or for quarks?

And, a second challenge would need to be faced even
assuming this first challenge is eventually addressed in a
given quantum-spacetime picture, so that actually the pic-
ture predicts the magnitude of quantum-spacetime effects
for, say, protons and also predicts how much weaker than
for protons the effects are for, say, Cs atoms. We would
clearly need a completely new type of theory of mechanics,
in which the spacetime properties of different particles are
different. We should renounce to one of the key aspects
of simplicity that survived previous evolutions of our for-
mulation of the laws of physics: the general-relativistic
description of spacetime, just like the special-relativistic
one and the Newtonian one, is indeed such that the impli-
cations of spacetime for particle properties are independent
of compositeness and are therefore the same for protons
and large atoms.
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