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Among all entanglement measures negativity arguably is the best known and most popular tool to

quantify bipartite quantum correlations. It is easily computed for arbitrary states of a composite system

and can therefore be applied to discuss entanglement in an ample variety of situations. However, as

opposed to logarithmic negativity, its direct physical meaning has not been pointed out yet. We show that

the negativity can be viewed as an estimator of how many degrees of freedom of two subsystems are

entangled. As it is possible to give lower bounds for the negativity even in a device-independent setting,

it is the appropriate quantity to certify quantumness of both parties in a bipartite system and to determine

the minimum number of dimensions that contribute to the quantum correlations.
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Introduction.—Dimension, that is, the number of inde-
pendent degrees of freedom, is a particularly important
system parameter. It is relevant, for example, for the
security of cryptography schemes and for the significance
of Bell inequality violation [1,2]. In general, in information
processing (both classical and quantum) the dimensional-
ity may be regarded as a resource and is therefore crucial
for system performance.

The device-independent characterization of physical
systems [1–9] without a priori restrictions regarding the
underlying structure of mathematical models is fundamen-
tal for our understanding of nature. The goal is to obtain the
desired physical information based only on the statistics
from certain measurement outcomes (‘‘prepare and mea-
surement scenario,’’ Ref. [3]) without reference to internal
properties or mechanisms of a device. In recent years
numerous schemes for device-independent dimension test-
ing and other system properties have been proposed. There
are methods that detect theminimum number of classical or
quantumdegrees of freedom for a single system [3,7,8]. The
dimensionality may be inferred also from Bell-inequality
violation [1,2]. On the other hand, there are device-
independent methods for multipartite entanglement detec-
tion [4–6,9]. In our Letter we propose direct counting of
entangled dimensions based on awell-known entanglement
measure for bipartite systems, the negativity, thereby elu-
cidating the physical meaning of the latter. The method can
be made device independent by invoking techniques from
Refs. [6,9]. With our result we cannot draw any conclusion
regarding the classical dimensions of the two local systems.
However, since entanglement is possible only between
quantum degrees of freedom we directly obtain the mini-
mum number of quantum levels for both parties which then
are certified to be quantum without further assumption.

To demonstrate this we first study a nontrivial family of
mixed states that can be defined for any d� d-dimensional
bipartite system, the axisymmetric states. Their negativity
provides a clear illustration for the central statement of our
article. It is then easy to show that this statement holds
for arbitrary states as well. Finally, we establish the link
to the device-independent description that concludes our
construction of a device-independent bound on the number
of entangled dimensions for two-party systems.
Negativity.—The negativity was first used by Zyczkowski

et al. [10] and subsequently introduced as an entanglement
measure by Vidal and Werner [11]. Consider the state �
of a bipartite system with finite-dimensional Hilbert space
H A �H B. The negativity is defined as

N ð�Þ ¼ 1

2
ðk�TAk1 � 1Þ; (1)

where�TA denotes thepartial transposewith respect to partyA

and kMk1 � tr
ffiffiffiffiffiffiffiffiffiffiffiffi
MyM

p
is the trace norm of the matrix M.

We slightly modify this definition by introducing the quantity

N dimð�Þ ¼ 2N ð�Þ þ 1 � k�TAk1: (2)

Asour discussionproceeds itwill turnout that the least integer
greater than or equal toN dim is a lower bound to the number
of entangled dimensions between the parties A and B.
We note that there is another entanglement measure

closely related to the negativity, the so-called logarithmic
negativity [11–13] LNð�Þ ¼ log2k�TAk1. The operational
meaning of the logarithmic negativity is known: It is the
entanglement cost of preparing a state under quantum
operations preserving the positivity of the partial transpose
[12,14]. It is remarkable that, in some sense, this physical
meaning represents an asymptotic counterpart to the
main statement of the present article concerning the
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entanglement dimension as single-copy property of
entangled states.

Axisymmetric states.—In studies of entanglement prop-
erties it is often useful to define families of states with a
certain symmetry [15], such as the Werner states [16] and
the isotropic states [17]. Here we introduce the axisym-
metric states �axi for two qudits which are all the states
obeying the same symmetries as the maximally entangled
state in d dimensions

j�di ¼ 1ffiffiffi
d

p ðj11i þ j22i þ � � � þ jddiÞ; (3)

that is (i) exchange of the two qudits, (ii) simultaneous
permutations of the basis states for both qudits, e.g.,
j0iA $ j1iA and j0iB $ j1iB, (iii) coupled phase rotations

Uð’1; . . . ; ’d�1Þ ¼ e
i
P

j
’jgj � e�i

P
k
’kgk

where gj (j ¼ 1; . . . ; d� 1) are the diagonal generators of

the group SUðdÞ.
Note that �d is the only pure state with these symme-

tries. Because of the invariance under phase rotations a
state with these symmetries can be written as jc i ¼P

jajjjji with j¼1;...;d. The symmetry with respect to

simultaneous level permutations leads to aj ¼ ak (j�k),

hence aj ¼ 1=
ffiffiffi
d

p
up to an irrelevant global phase. Apart

from the maximally entangled state this family contains
only (mostly full-rank) mixed states. For any d ^ 2
these states are given by two real parameters x and y
that describe the position of the state in a plane triangle
(in close analogy to the Greenberger-Horne-Zeilinger
symmetric states [18]), see Fig. 1. In order to determine
the lengths of the triangle sides we choose the Euclidean
metric of the triangle to coincide with the Hilbert-Schmidt
metric of the density matrices. This enables us to deduce
various physical facts from Fig. 1 merely by means of
geometric intuition.

Axisymmetric states for d� d systems can be repre-
sented as d2 � d2 matrices with diagonal elements

�axi
jj;jj ¼

1

d2
þ a; �axi

jk;jk ¼
1

d2
� a

d� 1
ðj � kÞ

(j, k ¼ 1; . . . ; d) and off-diagonal entries

�axi
jj;kk ¼ b ðj � kÞ;

all other off-diagonal elements vanish due to the symmetry
condition regarding local phase rotations. The ranges for
the matrix elements are

� 1

d2
â ^

d� 1

d2
(4)

� 1

d� 1

�
1

d2
þ a

�
b̂

�̂
1

d2
þ a

�
: (5)

From Eqs. (4) and (5) we recognize the triangular shape
of the set of axisymmetric states. With this choice of

parametrization the fully mixed state ð1=d2Þ1d2 is located
at the origin.
Now we choose the scale of a � �y and b � �x

such that the Euclidean metric for x and y agrees with
the Hilbert-Schmidt metric in the space of density matri-
ces. We define the Hilbert-Schmidt scalar product of two

matricesM1 andM2 as hM1;M2iHS � trðMy
1M2Þ. With this

we find � ¼ ð ffiffiffiffiffiffiffiffiffiffiffiffi
d� 1

p
=dÞ and � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dðd� 1Þp �1
so that

� 1

d
ffiffiffiffiffiffiffiffiffiffiffiffi
d� 1

p ŷ ^

ffiffiffiffiffiffiffiffiffiffiffiffi
d� 1

p
d

(6)

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðd� 1Þp x̂ ^

ffiffiffiffiffiffiffiffiffiffiffiffi
d� 1

d

s
: (7)

Entanglement of axisymmetric states.—Remarkably,
many entanglement properties of axisymmetric states can
be determined exactly. The entanglement class of a bipar-
tite state with respect to stochastic local operations and
classical communication (SLOCC) is given by its Schmidt
number, the minimal required Schmidt rank for any pure-
state decomposition of the state. By using the optimal
Schmidt number witnesses [19]

W ¼ k� 1

d
1d2 � j�dih�dj

(2 k̂ d̂Þ we find for each state �axiðx; yÞ the corre-
sponding Schmidt number, cf. Fig. 1. Notably, the borders
between the SLOCC classes for x ^ 0 are straight lines
parallel to the lower left side of the triangle. This is no

FIG. 1 (color online). The convex set of d� d axisymmetric
states �axi, here for d ¼ 4. The family is characterized by two
real parameters. While x is proportional to the off-diagonal
element, y describes the asymmetry between the two types of
diagonal elements. The upper right corner corresponds to the
maximally entangled state j�di (the only pure state), the com-
pletely mixed state ð1=d2Þ1 d2 resides at the origin. The states
with local dimension d have d SLOCC classes corresponding to
their Schmidt number k (indicated by the yellow numbers in the
regions). The states with Schmidt number k̂ form the convex
sets Sk and build a hierarchy S1 � S2 � � � � � Sd. Note that
Schmidt number k ¼ 1 corresponds to separable states which are
considered classical.
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surprise since those lines correspond to states of constant
overlap with the maximally entangled state�d. Moreover,
we easily identify the compact convex sets Sk of states with
a Schmidt number at most equal to k [19].

In the next step, we calculate the negativity for axisym-
metric states. To this end we consider the eigenvalue prob-
lem for the partial transpose of �axi. It results in dðd� 1Þ=2
identical eigenvalue problems for 2� 2 matrices

1
d2
� a

d�1 b

b 1
d2
� a

d�1

0
@

1
A

which have the eigenvalues

�� ¼ 1

d2
� a

d� 1
� jbj:

Adding the absolute negative eigenvalues and rewriting a
and b in terms of x and y leads to

N ¼ max

�
0;
1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðd� 1Þ

p
jxj þ ffiffiffiffiffiffiffiffiffiffiffiffi

d� 1
p

y� d� 1

d

��
:

(8)

From this we find the exact N dim for the entangled
axisymmetric states

N dimð�axiðx; yÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðd� 1Þ

p
jxj þ ffiffiffiffiffiffiffiffiffiffiffiffi

d� 1
p

yþ 1

d
(9)

which is noteworthy in several respects. First, the negativity
is a linear function of jxj and y (see Fig. 2). A state has
nonvanishing negativity if and only if it is not separable.
Consequently, there are no entangled axisymmetric states
with positive partial transpose. Further, and most impor-
tantly, the borders between SLOCC classes correspond to
isolines for integer values of the negativity. With the ceiling
function dxe, the smallest integer greater than or equal to x,
we see that for axisymmetric states �axiðx; yÞ

SLOCC class k ¼ dN dimðx; yÞe: (10)

However, the SLOCC class, that is, the minimum required
Schmidt rank of the pure states in the decomposition of�axi,
counts the number of degrees of freedom in which subsys-
tems A and B are entangled. In consequence, our result
implies that for axisymmetric states the modified negativity
N dim is a precise counter of entangled dimensions.
Dimension estimator for arbitrary states.—Naturally the

question arises to what extent this statement holds for all
bipartite states. Because of the existence of entangled
states with positive partial transpose [20] it is clear that
the negativity cannot be a precise counter of entangled
dimensions for arbitrary states. It is worth noticing that
even for pure states the dimension estimate from the nega-
tivity can turn out much smaller than the Schmidt rank

(for example, for very asymmetric coefficients, as in jc i ¼ffiffiffiffiffiffiffiffiffiffiffiffi
1� "

p j11i þ ffiffiffi
"

p j’i with " � 1 and j’i in the orthogo-
nal complement of j11i). This is because the negativity is
continuous in a small ‘‘dimension admixture’’ while the
Schmidt rank is not.
An interesting consequence is that the dimension indi-

cated by the negativity is an effective number in the sense
that weakly entangled degrees of freedom give only a weak
contribution.
In the following we prove that, while not being an exact

counter, the modified negativity N dim is always a lower
bound to the Schmidt number.
To this end, we explicitly show again how to calculate

the negativity for pure entangled states of Schmidt rank k.
Any such state is locally equivalent (that is, equivalent
under SLOCC) to j�ki, the maximally entangled state
of Schmidt rank k. Considering the partial transpose of
j�kih�kj

j�kih�kj ¼ 1

k

X
��

j��ih��j!TA 1

k

X
��

j��ih��j

it is evident that N dimð�kÞ¼2ð1=kÞðkðk�1Þ=2Þþ1¼k.
Now, since according to Ref. [11] the negativity is a convex
function of the state � we find for an arbitrary state of
Schmidt number k

N dimð�Þ
X̂
j

pjN dimðc jÞ
X̂
j

pjk ¼ k (11)

for � ¼ P
jpjjc jihc jj, since in that case N dimðc jÞ k̂.

We mention that these estimates are valid for arbitrary

FIG. 2 (color online). Exact modified negativity N dim for
d� d axisymmetric states �axi, again for d ¼ 4. (a) The inclined
triangular surfaces (blue) displayN dimðx; yÞ. It depends linearly
on jxj and y. Note that the borders between SLOCC classes
(solid lines in the x-y plane, red) are projections of integer-value
isolines of the modified negativity. (b) The ceiling function
dN dimðx; yÞe (staircaselike surface, blue) counts the Schmidt
number of �axiðx; yÞ.
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bipartite systems with d� d0 dimensions, both for d ¼ d0
and for d � d0. This is because the Schmidt rank of a pure
d� d0 state cannot exceed the smaller of the two local
dimensions. This concludes the proof that the modified
negativity N dim is an estimator for the number of
entangled dimensions of arbitrary two-party states. j

While the dimension-counting property of N dim is
comprehensible for pure states it is not so easy to develop
an intuition for mixed states. After all, this property relies
on the convexity of the negativity that is not obvious
either. The axisymmetric states at least provide an illus-
tration showing that precise dimension counting is possible
also for mixed states.

Device-independent dimension estimate.—It has yet to
be discussed that a lower bound on the entangled dimen-
sions via the negativity, or N dim, can be obtained in a
device-independent setting. This technique has recently
been worked out by Moroder et al. [9] and we sketch
only the main idea here. A device-independent scenario
implies that a number of generalized measurements are
carried out on the subsystems A and B. While the detailed
actions Ai, Bj of the measurement devices on the true state

�AB are unknown to the observers, the outcomes for
each party labeled by i and j, are mutually exclusive.
One also defines A0 ¼ 1A and B0 ¼ 1B. The observers
‘‘see’’ �AB only via their preparation-measurement setup,
and (partially) determine the Hermitian matrix

�ij;kl½�AB	 ¼ tr½�ABðAy
k Ai � By

l BjÞ	 (12)

with orthonormal bases fjii ~Ag, fjji ~Bg in the outcome spaces
~A and ~B. This matrix depends linearly on�AB and is positive
whenever the true state �AB is positive. Correspondingly,

whenever �TA

AB is positive, �TA is positive, too.
The possibility of estimating the negativity relies on its

variational expression [11]: N ð�ABÞ¼minftr�:�TA ^0;
ð�AB��ÞTA ^0g. The properties of � mentioned above
mean that the conditions for minimization hold also for
�½�AB	 and �½�	. Moreover, the optimized quantity tr �
equals �0000½�	. Therefore, minimizing �0000½�	 over all
matrices � consistent with the measurement outcomes
(and the condition tr �AB ¼ 1) will give a lower bound
for the negativity N ð�ABÞ.

Evidently, our findings are useful for characterizing a
test system with unknown quantum dimension. By entan-
gling it with an auxiliary system of known dimension and
measuring the negativity, a lower bound to the number of
quantum levels in the test system can be found.

In principle, this method can be applied also to multi-
partite systems where it may yield information regarding
the quantum dimension of the various bipartitions.
However, in general it will not help to characterize specific
SLOCC classes. For example, it is not possible to
distinguish between a biseparable mixed three-qubit state

(with entanglement in all bipartitions) and aW state just by
means of the negativity.
We conclude by mentioning that the results regarding

the negativity hold also for the convex-roof extended nega-
tivity [21] because it is the largest convex function that
coincides with the negativity on pure states [22]. However,
while improving the estimate in Eq. (11), the negativity
would forfeit its most important asset, namely, that it can
be calculated easily.
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