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We discuss sequential unambiguous state-discrimination measurements performed on the same qubit.

Alice prepares a qubit in one of two possible states. The qubit is first sent to Bob, who measures it, and

then on to Charlie, who also measures it. The object in both cases is to determine which state Alice sent.

In an unambiguous state discrimination measurement, we never make a mistake, i.e., misidentify the state,

but the measurement may fail, in which case we gain no information about which state was sent. We find

that there is a nonzero probability for both Bob and Charlie to identify the state, and we maximize this

probability. The probability that Charlie’s measurement succeeds depends on how much information

about the state Alice sent is left in the qubit after Bob’s measurement, and this information can be

quantified by the overlap between the two possible states in which Bob’s measurement leaves the qubit.

This Letter is a first step toward developing a theory of nondestructive sequential quantum measurements,

which could be useful in quantum communication schemes.
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When an observer performs a standard projective quan-
tum measurement on a system, the state of the system after
the measurement, the so-called postmeasurement state, j�i,
is an eigenstate of the operator that was measured. The
measurement is, thus, destructive, and it is generally
assumed that any information about the initial state, jc i,
of the system is lost in this process. If, immediately after the
first measurement, a second observer performs another
measurement on the system the results are describable in
terms of j�i, the postmeasurement state of the first observer
and not in terms of the initial state jc i. Therefore it is
generally assumed that consecutive measurements on the
same quantum system do not yield additional information
about the initial preparation, because every consecutive
observation prepares the system in a new state.

The purpose of this Letter is to show that this commonly
accepted view of standard quantum measurements can be
very significantly refined. We show that it is possible to
perform consecutive observations on the same system by
multiple observers in such a way that each observer in the
chain obtains information about the initial state. In fact,
and this is the most surprising of our findings, we show that
it is possible that each observer obtains full information
about the state in which the system was prepared initially.

We illustrate these ideas on the case in which there are
two observers in the observation chain, and each of them
performs an unambiguous state discrimination measure-
ment. We emphasize that this is for illustrative purposes
only, the same ideas work for more than two consecutive
observers and other measurement scenarios.

In its simplest form unambiguous state discrimination
(UD) is the following measurement task. Alice prepares a
qubit in one of two known states, jc 1i or jc 2i, and sends it

to Bob. His task is to determine what the state of the qubit is,
with no error permitted [1–4]. If jc 1i and jc 2i are not
orthogonal, Bob cannot succeed all the time; the price to
pay for no error is that themeasurement that distinguishes the
states will sometimes fail. That is, themeasurement has three
possible outcomes, 1, corresponding to jc 1i, 2, correspond-
ing to jc 2i, and 0, corresponding to failure or an inconclu-
sive outcome. The measurement is optimal if the probability
of failure is a minimum and is given by jhc 1jc 2ij in the case
that the states are equally probable. UD is employed in, e.g.,
quantum key distribution, quantum secret sharing, and quan-
tum algorithms [5–7]. It has also been implemented experi-
mentally using the polarization states of photons [8,9].
Here we address the question of whether more than one

user can identify the initial state of the same qubit. In this
scenario Alice prepares a qubit in either jc 1i or jc 2i and
sends it to Bob. Bob performs an unambiguous discri-
mination measurement on the qubit, and sends it on to
Charlie, who also performs an unambiguous discrimina-
tion measurement on the qubit. We want both Bob and
Charlie to have a nonzero chance of identifying the state so
that the probability of both of them succeeding is a maxi-
mum. The rules of the game are that any premeasurement
conspiracy is allowed among all parties but no classical
communication can take place between Bob and Charlie
after Bob performs his measurement, a scenario typical in
secure quantum communication strategies. So, in particu-
lar, Charlie never knows whether Bob’s measurement
succeeded or failed. The key to making this procedure
work is that the state discrimination Bob performs cannot
be optimal, otherwise he would have extracted all of the
quantum information carried by the qubit, and there would
be none left for Charlie to measure.
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Thus, the question of how much information about a
state is left after it has been measured is more subtle than is
commonly assumed, especially if the measurement is a
generalized one, which is described by a POVM (positive
operator-valued measure). However, some information is
left even in the case of projective measurements. Rapčan
et al. [10] examined how a second observer could ‘‘scav-
enge’’ information about a quantum state that has previ-
ously been measured by a first observer. In their scenario,
the second observer has no information about the measure-
ment made by the first, and yet he is still able to gain
information about the initial state of the system. In our
scenario, Charlie knows exactly what type of measurement
Bob will perform. Without this condition Charlie would
not be able to perform unambiguous discrimination.

To begin we assume that Alice prepares qubits in jc 1i or
jc 2i with equal probability. Without loss of generality, the
overlap of the two possible states, s ¼ hc 1jc 2i, is taken to
be real (0 � s � 1) and we choose the phase of jc?

1 i, the
vector orthogonal to jc 1i, so that

jc 2i ¼ sjc 1i þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� s2
p

jc?
1 i;

jc?
2 i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� s2
p

jc 1i � sjc?
1 i:

(1)

Both Bob’s and Charlie’s measurements are described
by POVMs [11]. Each POVM has three elements: the
first, �1, corresponding to the detection of jc 1i, the sec-
ond, �2, corresponding to the detection of jc 2i, and the
third,�0, corresponding to the failure of the measurement.
Each element is a positive operator on the two-dimensional
qubit Hilbert space, and their sum is the identity operator.
If one is measuring a qubit in the state jc ii, the probability
of obtaining the outcome j is hc ij�jjc ii.

The requirement that errors are not allowed mandates
that the POVM elements describing Bob’s measurement
are of the form �B

1 ¼ c1jc?
2 ihc?

2 j and �B
2 ¼ c2jc?

1 i�hc?
1 j for the conclusive outcomes and

�B
0 ¼ I��B

1 ��B
2 (2)

for the inconclusive one, since the three elements add to the
identity. Here c1 and c2 are positive constants yet to be
determined, subject to the constraint �0 � 0. �1 and �2

are positive by construction.
The probability that Bob unambiguously detects jc ii if

it is sent is given by pi ¼ hc ij�B
i jc ii, for i ¼ 1, 2 and the

probability that the measurement fails if jc ii is sent is
given by qi ¼ hc ij�B

0 jc ii. Note that the probability that

jc ji is detected if jc ii is sent is zero for i � j, so pi þ
qi ¼ 1. These relations allow us to express ci in terms of
the more physical success and failure probabilities,

ci ¼ pi

1� s2
¼ 1� qi

1� s2
: (3)

Wewill have to know the states after Bob’smeasurement,
since they will be the input states for Charlie’s measure-
ment. They can be expressed in terms of the so-called

detection operators Aj that are related to the corresponding

POVM elements by �B
j ¼ Ay

j Aj for j ¼ 0, 1, 2. If jc ii is
the state before the measurement, then if we obtain the
result i for the measurement (i ¼ 1, 2 success), the post-
measurement state (success state) j�ii is given by

j�ii ¼ Aijc ii
k Aic i k ; (4)

and if we obtain the result 0 for the measurement, the
postmeasurement state (failure state) j�ii is given by

j�ii ¼ A0jc ii
k A0c i k : (5)

The operators Aj can be chosen in the form Aj ¼
Ujð�B

j Þ1=2, where Uj can be any unitary operator. Thus,

we have quite a bit of freedom in choosing these operators
and, consequently, Bob’s postmeasurement states. In our
case they can be expressed as A1 ¼ ffiffiffiffiffi

c1
p j�1ihc?

2 j and

A2 ¼ ffiffiffiffiffi

c2
p j�2ihc?

1 j.
We can now see what happens after Bob’s measurement.

If Alice sent jc ii, then Bob will send Charlie the state j�ii
with probability pi or the state j�ii with probability qi.
However, we know that for unambiguous discrimination to
be possible, the states to be discriminated must be linearly
independent [12], and since we are in a two-dimensional
space, Charlie can only discriminate between two possible
pure states. This mandates the choice j�ii ¼ j�iiwhich, in
turn, implies

A0 ¼ ffiffiffiffiffi

a1
p j�1ihc?

2 j þ
ffiffiffiffiffi

a2
p j�2ihc?

1 j; (6)

where a1 and a2 are constants to be determined. Therefore,
if Alice sent jc 1i, Charlie will receive j�1i, whether Bob’s
measurement succeeded or not, and if Alice sent jc 2i,
Charlie will receive j�2i, again whether Bob’s measure-
ment succeeded or not. Charlie’s task, then, is to optimally
discriminate between j�1i and j�2i. Further, since

hc ijAy
0A0jc ii ¼ qi, we have that

ai ¼ qi=ð1� s2Þ: (7)

We now have two different expressions for �0, Eq. (2)

and Ay
0A0 from (6), so we still have to check their

compatibility. In the fjc 1i; jc?
1 ig basis the operator �B

0 ,

Eq. (2), takes the form

�B
0 ¼ 1� c1 þ c1s

2 c1s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� s2
p

c1s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� s2
p

1� c1s
2 � c2

0

@

1

A: (8)

It is easy to obtain the eigenvalues and corresponding
eigenvectors explicitly. For our purposes, however, the
conditions of non-negativity of �0, Trð�0Þ ¼ 2� c1 �
c2 � 0 and det�0 ¼ 1� c1 � c2 þ c1c2ð1� s2Þ � 0, are
more useful. The second is the stronger of the two con-
ditions. When it is satisfied the first one is always met.
Using (3), the condition on the failure probabilities takes
the form,
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1 � q1q2 � s2: (9)

If we now calculate�0 ¼ Ay
0A0 from (6) with ai from (7),

we find that the two expressions agree if

q1q2 ¼ s2

t2
; (10)

where we introduced h�1j�2i � t, which we can assume is
real and positive. The condition (10) is clearly compatible
with (9) provided t ¼ h�1j�2i � s ¼ hc 1jc 2i.

The emerging picture is now the following. Bob extracts
some information about the two possible inputs, jc 1i and
jc 2i. By doing so he produces states with a greater overlap,
t > s. Charlie’s task, then, is to optimally discriminate
between j�1i and j�2i. Since an optimized measurement
extracts all of the remaining information, Charlie’s postmea-
surement states can carry no further information about the
initial preparation, so for all inputs and outcomes they are
collapsed to the same common state. The failure probabilities
for Bob’s measurement must satisfy the constraint given by
Eq. (10). Charlie’s failure probabilities must satisfy an
entirely similar constraint that we can most easily obtain by
replacing swith t and twith 1 in (10), sincewe notice that for
his measurement t is the overlap of the input states and the
overlap of the postmeasurement states is 1. The two const-
raints are given together as [upper indexBðCÞ: Bob (Charlie)]

qB1q
B
2 ¼ s2

t2
; qC1 q

C
2 ¼ t2: (11)

The corresponding measurement tree is shown in Fig. 1.
Let us now examine the probability of both measure-

ments succeeding. Clearly, for the upper branch of the
measurement tree in Fig. 1 the joint probability of success
is P1¼pB

1p
C
1 ¼ð1�qB1 Þð1�qC1 Þ and for the lower branch

P2 ¼ pB
2p

C
2 ¼ ð1� qB2 Þð1� qC2 Þ, so the average joint suc-

cess probability is

PS ¼ 1

2
½ð1� qB1 Þð1� qC1 Þ þ ð1� qB2 Þð1� qC2 Þ�; (12)

since each branch has a prior probability of 1=2.
This is the quantity we want to optimize under the two

constraints given in (11). We will also impose the condi-
tions that the failure probabilities for both states be the
same, i.e., qB1 ¼ qB2 and qC1 ¼ qC2 . Pang et al. have shown
that for a range of s there are measurements that violate
these conditions and give a slightly higher average success
probability than those that obey these conditions [13].
For these measurements, however, the failure probability
of one of the states for both Bob and Charlie is 1, meaning
that only one of the two states can be successfully detected.
This renders them impractical for communication
purposes, where one needs to be able to detect two alter-
natives. In this Letter we shall only consider measurements
for which the failure probabilities for the two states are the
same. The optimization is now straightforward and can be
done by, e.g., using the method of Lagrange multipliers,
with the result qB1 ¼qB2 ¼qC1 ¼qC2 ¼

ffiffiffi

s
p

and t ¼ ffiffiffi

s
p

.

Using the optimal values in (12), we finally obtain

P
ðoptÞ
S ¼ ð1� ffiffiffi

s
p Þ2: (13)

This equation constitutes the central result of our Letter.
It clearly shows that there is a finite probability that both of
the consecutive observers succeed in extracting the full
information about the states. We also note that the proba-
bility of at least one of Bob’s or Charlie’s measurements
succeeding is just 1� s, which is just the probability of a
single optimal unambiguous discrimination measurement
of jc 1i and jc 2i succeeding.
So far we have made use of the POVM formalism to

describe the unambiguous discrimination measurements.
Another approach is to use the Neumark formalism, in
which the system to be measured is coupled to a second
system, and projective measurements are performed on the
second system. This type of analysis makes it easier to see
what is required for an experimental implementation, and it
is discussed in the Supplemental Material [14].
We now want to compare the sequential unambiguous

strategy to some strategies that do allow Bob and Charlie to
communicate classically. The strategies to be discussed,
like the one discussed above, will not produce any errors.
The strategies are the following.
(1) Bob performs an optimal unambiguous discrimina-

tion measurement on the qubit he receives from Alice. If he
succeeds he tells Charlie the results, while if he fails he
informs Charlie that his measurement failed, and that is the
end of the procedure. The probability of both of them
succeeding is

A B C

FIG. 1. Measurement tree for the sequential measurement.
Alice prepares a qubit either in the state jc 1i, which happens
with probability �1 or in the state jc 2i, which happens with
probability �2, such that �1 þ �2 ¼ 1. For simplicity, we
assume �1 ¼ �2 ¼ 1=2. She then hands the qubit to Bob who
performs an unambiguous discrimination measurement on it. If
he received the qubit in state jc 1i his postmeasurement state will
be j�1i and if he received the qubit in state jc 2i his postmea-
surement state will be j�2i. The overlap, t, of the postmeasure-
ment states is increased relative to the overlap, s, of the initial
states, so s < t < 1. Bob then sends Charlie the qubit which is
now in one of the postmeasurement states. Charlie then performs
an optimal unambiguous discrimination measurement on the
qubit and extracts the remaining information, increasing the
overlap of all postmeaurement states to 1.

PRL 111, 100501 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

6 SEPTEMBER 2013

100501-3



Pð1Þ
S ¼ 1� s: (14)

(2) Bob performs an optimal unambiguous discrimina-
tion measurement on the qubit he receives from Alice. If he
succeeds he sends a qubit in the state he found to Charlie,
while if he fails he informs Charlie that his measurement
failed, and that is the end of the procedure. The probability
of both of them succeeding is

Pð2Þ
S ¼ ð1� sÞ2: (15)

(3) Bob probabilistically clones the qubit he receives
from Alice [15]. If he succeeds he keeps one clone and
sends the other to Charlie, and both apply optimal unam-
biguous discrimination to their qubits. If the cloning fails
he informs Charlie, and that is the end of the procedure.
The probability that both succeed is

Pð3Þ
s ¼ ð1� sÞ2=ð1þ sÞ: (16)

The performance of all of the strategies is compared in
Fig. 2. Finally, let us mention that the probability that at
least one of the parties succeeds is 1� s, and this is the
same for all four strategies.

Therefore, if we only consider the probability of one or
both of the parties identifying the state, none of the strategies
that allow Bob and Charlie to communicate classically does
better than the strategy that does not allow them to commu-
nicate. However, the strategies that allow communication
all do better when we consider the probability of both
parties identifying the state. Note that the three protocols
enumerated above usemore than one qubit, while the sequen-
tial unambiguous discrimination protocol uses only one.

The sequential scheme we propose can be generalized
in several directions. One obvious generalization is for
general prior probabilities. Another one could be the exten-
sion to more than two consecutive observers. Instead of
just Bob and Charlie one could have B1; B2; . . . ; Bn and
there will be a finite probability that each one successfully
identifies the initial state of the qubit. The optimal joint

probability of success for the case of equal failure proba-
bilities is given by

P
ðopt;nÞ
S ¼ ð1� s1=nÞn; (17)

which is a straightforward generalization of (13). Finally,
the theory of sequential measurements is not at all rest-
ricted to POVMs and can be extended to other measure-
ment scenarios including, in particular, standard projective
measurements. These and other generalizations are left,
however, for a separate publication [16].
In summary, the scheme we have proposed, successive

unambiguous discrimination measurements on the same
qubit, could be useful in quantum communication schemes.
For example, the B92 quantum cryptography protocol is
based on communication using nonorthogonal states [5],
and the sequential discrimination scheme could be com-
bined with it to distribute a key to more than one party. This
is discussed further in the Supplemental Material [14].
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four strategies discussed in the Letter. Solid line:P

opt
S vs s, Eq. (13).

Dotted line: Pð1Þ
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