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Phase transitions in spherical particles of a cubic ferroelectric are considered within Landau-Ginzburg-
Devonshire theory. Concentrating on effects of the depolarizing field, we study competition between states
with homogeneous polarization and vortex structures. For large radii of the sphere (R > R_), the phase
transition is into a vortex state while for R < R, it might be into an homogeneous state. R, is proportional
to the square root of the dielectric constant of the environment. If this constant is of the order of unity, a
transition into homogeneous state is practically impossible. The obtained results are applied to a
discussion of the formation of “‘polar nanoclusters” in relaxors.
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Discussion of ferrolectric phase transitions (PTs) in
small particles has a long tradition starting with papers
from Kanzig and co-workers in the 1950s [1-3]. This topic
has become especially popular over the past two decades
because of growing interest in ferroelectric phenomena at
small scales. Surprisingly, the analytical phenomenologi-
cal theory of such PTs remains poorly developed even in its
most basic points. We discuss this situation in some detail
below, principally intending to account for effects of depo-
larizing fields, which were the main focus of Kanzig and
co-workers. They designed experiments in which pro-
cesses of compensation of the depolarizing field were
hampered [1], and only recently similar experiments
were performed by Li and Shih [4] without adequate
theoretical support. As a result, the problem of finding
the PT temperature in a particle of a ferroelectric which
is cubic in the paraelectric phase has not been solved in
analytical phenomenological theory until now, to the best
of our knowledge. The solution of this problem for a
spherical particle of such a ferroelectric embedded in a
dielectric medium is the main result of the present work.
We solve this problem not for a general case but supposing
that the particle surface is neither hampering nor favoring
the ferroelectric phase transition (free surface). Even in this
case we need further simplifications to get an analytical
solution, and a more complete solution is far beyond the
present work. We shall discuss modifications of our ideal-
ized solution, which are expected when moving to more
realistic cases.

This problem of a ferroelectric PT in a spherical particle
is related to the problem of formation of so-called polar
nanoregions or precursor polar clusters in regions with a
high local Curie temperature, which are expected in mate-
rials with disorder. Let us emphasize that the question
about the creation and nature of the polar precursor regions
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or polar nanoclusters is at the heart of the interpretation
of properties of the so-called relaxors [5-7]. That is why
the present work is directly related to the understanding of
the properties of these materials. Let us emphasize that we
consider only part of the problem of the local transition in a
ferroelectric region with a locally elevated Curie tempera-
ture. Indeed, even in a nonferroelectric the local conden-
sation occurs not at a temperature equal to the local value
of the PT temperature but at a lower temperature because
the environment of the region in question ‘‘is not ready” to
transform and hampers the transformation in the region.
We do not take this effect into account, concentrating on
the effects of the depolarizing field, which are, to our
understanding, the most important.

In what follows we consider first an academic case of a
2D or infinite cylindrical particle of a ferroelectric with two
polar axes in the plane and in an isotropic dielectric envi-
ronment. This case is mathematically simpler than the 3D
case of a spherical particle, but both the qualitative results
and the mathematical difficulties are already there. Then
we consider the ferroelectric PT in a spherical particle of a
material, which is cubic in the paraelectric phase, with the
same assumptions and approximations as before. Finally,
we discuss the relevance of the results in this Letter to the
question of the nature and properties of polar nanoclusters
in relaxors.

To find the PT temperature and the profile of polariza-
tion appearing at the PT we study the stability of a para-
electric phase with respect to different polarization
distributions. The loss of stability is signaled by the appear-
ance of nontrivial solutions of a system of equations con-
sisting of linearized governing equations for polarization,
the electrostatic equations, and the boundary conditions.
Among the infinite number of ways to lose stability, only
the earliest one, i.e., that which occurs at the highest
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temperature, is that which happens at the PT. The problem
reduces to finding this temperature and the form of the
polarization distribution that brings about this stability
loss. This method has been repeatedly used by many
authors; see Refs. [8-12].

We obtain the linearized equations of state using the
harmonic part of the Landau-Ginzburg-Devonshire (LGD)
free energy which for the 2D case has the form
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where p, ¢ are polar coordinates, A = A'(T — T,), T, is
the PT temperature in bulk, g = const, and the gradient
term can be found in Ref. [13]. There are two governing
equations for the ferroelectric polarization:
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Adding the equation for electrostatic potential we obtain,
for the interior of circle, a system of three coupled equa-
tions in partial derivatives. The solutions also have to
satisfy boundary conditions at the surface relating electric
fields in internal and external regions. The problem
becomes too complicated and it is reasonable to make
use of physical ideas.

Physically, one can expect competition between the
closed flux solutions, i.e., that of a vortex, and the solutions
corresponding to homogeneous polarization in the circle.

(a)

FIG. 1 (color online).
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(b)

(a) Vector plot and (b) radial dependence of the polarization value.

In the first case, where the electric field is zero and the
external medium plays no role, one can put P, = 0 and
consider P, depending on p only. Then the equation for

P, reads
qu,) (A 1)
p—)—-(—+—=|P, =0,
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with the boundary condition of a free surface: dP,/dp =0
at p = R. Solutions of this equation regular at p = 0 have
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for A>0 and A <0, correspondingly, the forms P, =

CL[V(A/g)p] and P, = CJ\[{(—=A/g)p], where J,(x)
and I, (x) are Bessel and modified Bessel functions, respec-
tively. The first solution does not satisfy the boundary
condition if C # 0, i.e., only a trivial solution is possible
if A > 0; that is, the paraelectric is stable with respect to
vortex formation. For the second solution the boundary
condition is satisfied if A = —g(u,/R)?, where u, is the
nth root of the equation Jj(x) = 0. The earliest loss of
stability corresponds to the smallest value of w,: wq = 1.8.
The vector field and the form of P,(p) arising
at the stability loss are shown in Figs. 1(a) and 1(b).
Vortexlike distributions have been obtained computation-
ally in several papers; see, e.g., Refs. [14,15]. However,
the radial dependence of the polarization value just after
PT [Fig. 1(b)] has not been singled out to the best of our
knowledge.

To define the PT temperature we have to compare the
loss of stability with respect to vortex formation with other
possibilities of stability loss. We mean specifically the loss
of stability with respect to the homogeneously polarized
circle. Calculation of the electric field in this case is a
standard problem with the dielectric displacement inside
the circle taken as D = goe, E + P, where g, is the
so-called base dielectric constant [16]. The field inside
the circle is E = —[go(e), + &,)]7'P, where &, is the
dielectric constant of the environment. One finds that the
loss of stability occurs at A = —[go(g, + £,)]7". Since
the temperature of this type of stability loss does not
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Polarization distribution just after the paraelectric-ferroelectric phase transition in an infinite cylinder.
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depend on R, the earliest stability loss for large R is
with respect to vortex formation and the PT temperature
is given by the earlier result. However, for small R it is
possible that the PT into a homogeneous state occurs
before and instead of vortex formation. The character of
the PT changes at R =R, = u,(geg)/?(e, + &,)!/2
Since (gso)l/ 2 is, normally, about interatomic distances,
this critical radius is also about interatomic distances in an
environment with small & s i.e., the PT via vortex forma-
tion occurs for all values of R. However, in a medium with
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The full scale mathematical study is even less feasible here
than in the 2D case, and once more we make use of
physical arguments. To study the conditions for the appear-
ance of a vortex in a sphere, one can put E =0,
P, = Py = 0 and suppose that P, does not depend on ¢.
Then for P, we obtain
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It is helpful to formulate a Sturm-Liouville problem,
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with the condition of finiteness for y(6). One obtains
associated Legendre functions, P}(cosf) = y,(0), as the
eigenfunctions and A; =1[(I+ 1), [=1. Presenting
P,(r, 0) as

Py(r,0) = D Pu(r)y(0), ©)

we decompose the problem of finding solutions for Eq. (7)
into a set of problems for different /,

S RpRp

FIG. 2 (color online).
(b) radial dependence of the polarization value.

A

high ¢, the critical radius can be considerably larger than
atomic distances. We shall not discuss the above results
here because they are not very different from the 3D case
which is our focus of interest.

For this case the harmonic part of LGD free energy is
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with the boundary condition dP,/dr=0 at r=R.
Solutions of Eq. (10) which are regular at r = 0 are spheri-
cal Bessel functions of order /,
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For A > 0 the argument is imaginary, i.e. the solutions do
not satisfy the boundary condition, while for A < 0 this is

possible for
I\2
My
A= —gl—]),
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where u!, is the nth root of the equation j)(x) = 0. The real
loss of stability with respect to vortex formation corre-
sponds to the minimum value of u!, = ul =~2.1.

Since y;(#) = sinf, the form of the polarization distri-
bution arising at the stability loss with respect to vortex
formation is (see also Fig. 2)
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Polarization distribution just after the paraelectric-ferroelectric phase transition in a sphere. (a) Vector plot and

097601-3



PRL 111, 097601 (2013)

PHYSICAL REVIEW LETTERS

week ending
30 AUGUST 2013

As we also do for the case of a circle, we compare the
loss of stability given by Eq. (12) and the loss of stability
with respect to homogeneous polarization. Analogously to
the 2D case, we find E = —[gy(e;, + 2¢,)]7'P, and the

stability is lost at
A= —[ey(ep +2e,)] " (14)

For the critical radius we, therefore, have R, = ul(geg)!/?
(ep +2¢,)"/2. The PT into a homogeneously polarized
state. would occur at T=T,=T.—[goA'(e, +2&,)]".
For BaTiO;, A’ = 6.6 X 10° JmC 2K, T, =383 K,
g, = 7 (see, e.g., Ref. [17]), and for the sphere in vacuum,
ie., for g, =1, we find T, = —1.7 X 10* K; i.e., such a
PT is impossible. The normal situation is that the phase
transition proceeds into the vortex state at 7 = T,,;
for example, for R = 100 nm, we find from Eq. (12)
that T.—T,, =0.7X 1073 K, given that g=2X
100" Jm3C2 (Ref. [17]). It becomes natural that
Kanzig and co-workers [2] found no suppression of the
PT in small particles of BaTiO; with diameters of about
200 nm, while in uniaxial KH,PO,, where vortex states are
impossible, there was no PT for particles with diameters
less than 150 nm [1].

The above results emphasize that the depolarizing field
plays an extremely important role for a ferroelectric PT in
a particle or in a local region. A PT into a homogeneously
polarized state is only possible in an environment with a
high dielectric constant. The latter situation occurs in
relaxors and it is worthwhile to discuss this in more detail.
Originally, the idea of formation of polar regions in a
nonpolar matrix due to the locally elevated temperature
of a ferroelectric PT was put forward by Smolenskii and
Isupov [18,19], where fluctuations of a number of impuri-
ties in some (artificially chosen) regions were considered
as the reason for the local elevation of T',.. The same reason
has been postulated by Burns and Dacol [20] who, unlike
Isupov, believed these regions consisted of a small number
of the unit cells. Both groups virtually supposed that the
temperature of the local PT was approximately equal to
the local value of T. (T,;). This is not evident even if the
depolarizing field were absent [8,9], but the most important
fact is that both Isupov and Burns overlooked the effects of
the depolarizing field. These effects are extremely impor-
tant for ferroelectric PT in small isolated particles, as we
have shown above, so it is natural to suspect that they might
be important for local ferroelectric PT as well. One might
expect that the effects of the depolarizing field are not as
dramatic in local PT as they are for small particles because
these local transitions occur in regions surrounded by a
medium with a high dielectric constant, which is character-
istic of a ferroelectric not too far from the PT. In the case of
relaxors, we should take the temperature dependence of
this dielectric constant into account.

We suppose that the regions of locally elevated PT
temperature expected in relaxors are spherical and have

the same radius R. As before, we consider the effects of the
depolarizing field only, neglecting the nonelectrostatic ef-
fects. To begin with, consider the possibility that the local
PT in these regions is into a uniformly polarized state
(T = Ty,). The temperature of this PT we calculate using
Eq. (14), but taking into account the fact that the dielectric
constant of the medium [e, in Eq. (14)] now depends on
temperature. We are interested in the case of the matrix
having a large dielectric constant (g):

e, = ¢&= [SOA/(T - Tc)]il’ (15)

p

where T. now has a different meaning from the previous
sections, denoting the Curie temperature of the matrix, not
that of the inclusion (particle). The latter is denoted as T',;.
Neglecting ¢, in Eq. (14), we find that

T, + 2T,
T, =——"+.
th 3
The possibility of a PT into a homogeneously polarized

state is realized if R < R,. Using the above formula for R,
and Eq. (15), we can rewrite this condition as

(16)
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where r.(T,,) is the correlation length for the order
parameter (polarization) at 7 = T,,. Two comments
should be made on this formula. Firstly, the value of
r.(T,;) is usually very small. Indeed, identifying the
Burns temperature with 7,, and using, for example, data
from Ref. [20] (see Table 1) and Eq. (16), and then assum-
ing the same values for g and A’ as above for BaTiOs, we
find that, for a phase transition into a homogeneous state, R
should be less than 1 nm. Secondly, since the dimension of
the region of locally elevated PT temperature is compa-
rable to the correlation length of the environment at the
temperature of the expected local PT, our approximation
of considering only electrostatic effects and neglecting the
nonelectrostatic coupling becomes questionable and one can
expect that the real temperature of the local PT is consid-
erably less than that given by Eq. (16). Unfortunately, an
account for both electrostatic and nonelectrostatic effects is
fairly tricky and is well beyond the present work.

It makes sense to consider another possibility: a phase
transition into a vortex state, given by Eq. (12). The tem-
perature of this PT does not depend on the dielectric
constant of the environment and, therefore, on T,. This
correlates with an observation made in Ref. [20]. When
studying (Pb;_3,/,La,)(Zr,_,Ti,)O; with y = 0.65 and
different values of x, it has been mentioned that the
Burns temperature stays approximately the same for differ-
ent x while 7. changes substantially. Of course, this corre-
lation cannot be taken too seriously given the artificial
character of our model of a relaxor, where all the regions
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with an elevated temperature are spherical with the same
radius R. According to Eq. (12), the temperature of the PT
with vortex formation strongly depends on R so that even a
moderate spread of values of the radii would smear the
evidence of a local PT in the sample. The vortex state
formed just after the PT evolves with a further lowering
of temperature: it becomes a closed flux domain structure
and perhaps transforms into a homogeneous state with a
further lowering of temperature because of the increase in
the dielectric constant of the medium. Recently, several
authors have speculated about transformations in the polar
nanoregions, e.g., Refs. [21,22], and the possibility of a
local PT with vortex formation provides some room for
such speculations.

A.P.L. is grateful to V. Kabanov and R. Pirc for helpful
discussions.
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