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For coupled-dimer magnets with quenched disorder, we introduce a generalization of the bond-operator

method, appropriate to describe both singlet and magnetically ordered phases. This allows for a numerical

calculation of the magnetic excitations at all energies across the phase diagram, including the strongly

inhomogeneous Griffiths regime near quantum criticality. We apply the method to the bilayer Heisenberg

model with bond randomness and characterize both the broadening of excitations and the transfer of

spectral weight induced by disorder. Inside the antiferromagnetic phase this model features the remarkable

combination of sharp magnetic Bragg peaks and broad magnons, the latter arising from the tendency to

localization of low-energy excitations.
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Magnetic quantum phase transitions (QPTs) have
attracted enormous interest over the past two decades,
with intriguing aspects such as Bose-Einstein condensation
of magnons, exotic criticality, and non-Fermi-liquid behav-
ior [1–4]. The influence of quenched disorder, being inevi-
table in condensed-matter systems, on QPTs is a less
explored field, although a number of theoretical results
are available [5,6]: disorder can modify the critical behav-
ior or even destroy the QPT; in addition, it can produce
singular response in off-critical systems via quantum
Griffiths physics dominated by rare regions [7].

While the thermodynamics of disordered model systems
near quantum criticality has been studied using a variety of
theoretical tools [5], rather little is known about the dynam-
ics of excitations in this fascinating regime, mainly because
numerical methods are either restricted to the ground state
or work in imaginary time where real-frequency spectra
are difficult to extract, whereas analytical methods are
restricted to low energy and to the limits of either weak or
strong disorder. For quantum magnets, this issue is press-
ing, as high-resolution inelastic neutron scattering (INS)
experiments are getting access to magnetic excitations near
QPTs [8–11], and suitable materials with disorder created
via intentional doping are available [12–15].

The aim of this Letter is to close this gap: for coupled-
dimer magnets, being paradigmatic model systems for
magnetic QPTs [1–3], we propose a generalization of the
bond-operator method [16] to cases with quenched disor-
der. This enables the numerical calculation of magnetic
excitation spectra in both paramagnetic and magnetically
ordered phases, including the vicinity of the QPT, with
disorder being treated exactly in finite-size systems. We
apply the method to the square-lattice bilayer Heisenberg
model, studied in detail in the disorder-free case [17–22],
with different types of exchange randomness. Near quan-
tum criticality, we generically find a strong broadening in
both energy and momentum of the low-energy response,
whereas that at high energy is less affected by disorder.

An interesting dichotomy follows upon slightly moving
into the antiferromagnetic (AFM) phase: the strongly inho-
mogeneous AFM features low-energy magnons that are
distinctly broadened due to disorder-driven mode localiza-
tion, but at the same time displays sharp Bragg peaks in its
elastic response. We discuss connections to recent INS
experiments.
Model.—We consider a Heisenberg magnet of coupled

pairs of spins 1=2, with the general Hamiltonian

H ¼X
i

Ji ~Si1 � ~Si2 þ
X

hii0imm0
Kmm0

ii0
~Sim � ~Si0m0 (1)

defined on a lattice of N dimer sites i; J and K are the
intradimer and interdimer couplings, and m ¼ 1, 2 labels
the two spins of each dimer. Without quenched disorder in
the couplings J and K, this Hamiltonian can describe, e.g.,
spin ladders and bilayer Heisenberg magnets, but also
applies to materials such as TlCuCl3 [8,10,23–26] and
BaCuSi2O6 [27–29].
Generalized bond-operator method.—Let the four states

of each dimer i be jtkii, k ¼ 0; . . . ; 3, where jt0i ¼ ðj"#i�
j#"iÞ= ffiffiffi

2
p

, jt1i ¼ ð�j""i þ j##iÞ= ffiffiffi
2

p
, jt2i ¼ iðj""iþ ##iÞ=ffiffiffi

2
p

, jt3i ¼ ðj"#i þ j#"iÞ= ffiffiffi
2

p
. Formally, bosonic operators

tyik can be introduced that create these states out of a ficti-

tious vacuum, jtkii ¼ tyikjvacii, with the constraintP
kt

y
iktik ¼ 1 defining the physical Hilbert space [16]. In a

paramagnetic phase, it is convenient to fully ‘‘condense’’

the singlet, such that the operators tyi� (� ¼ 1, 2, 3) now
create triplet excitations (‘‘triplons’’) from a singlet back-
ground, and the constraint becomes of hard-core typeP

�t
y
i�ti� � 1 [21]. Approximations can then be understood

as expansion about the singlet product state jc 0i ¼
Q

ijt0ii.
Magnetically ordered phases correspond to a condensate

of triplets, such that the reference state now involves a
linear combination of singlet and triplets on each site.
A consistent description of excitations requires a basis
rotation in the four-dimensional Hilbert space spanned by
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the jtki [30,31]. Here, we generalize the approach of
Ref. [30] to inhomogeneous states. For every dimer site,
we introduce a SU(4) rotation to new basis states

j~tkii ¼ UðiÞ
kk0 jtk0 ii; ~tyik ¼ UðiÞ

kk0 t
y
ik0 ðk; k0 ¼ 0; . . . ; 3Þ

(2)

such that j ~c 0i ¼
Q

ij~t0ii replaces jc 0i as the reference

state. For instance, j~t0i ¼ ðjt0i þ jt3iÞ=
ffiffiffi
2

p ¼ j"#i describes
a Néel state polarized along z. TheUðiÞ are chosen such that
j ~c 0i is the best product-state (i.e., saddle-point) approxi-
mation to the ground state of H (Supplemental Material
[32]).

One now rewrites the Hamiltonian Eq. (1) in terms of the
j~tkii using the transformation Eq. (2) (Supplemental
Material [32]). In analogy to the paramagnetic case, one

condenses ~ty0 , such that the ~ty� (� ¼ 1, 2, 3) describe

excitations on top of the reference state j ~c 0i. The
Hamiltonian takes the form H ¼ H 0 þH 1 þH 2 þ
H 3 þH 4, where H n contains n ~tðyÞ� operators, and an
additional hard-core constraint for the ~t� is implied. With
the proper (saddle-point) choice of the reference state,H 1

vanishes, and H 2 describes Gaussian fluctuations around
an inhomogeneous magnetic state. H 2 has the form

H 2 ¼
X
ij��

"
A��
ij

~tyi�~tj�þ
 
B��
ij

2
~ti�~tj�þH:c:

!#
(3)

where quenched disorder enters via random A��
ij , B��

ij .H 2

is solved by a bosonic Bogoliubov transformation, which
yields the 3N positive-energy eigenmodes of H 2, used to
calculate the dynamic spin susceptibility (Supplemental
Material [32]). In both paramagnetic and collinearly
ordered phases, the polarization directions decouple, giv-
ing rise to triply degenerate modes in the paramagnetic
case and a longitudinal and two transverse modes in the
collinear case.

The excitations described by this method interpolate
continuously between triplons of a paramagnet and spin
waves of a semiclassical AFM phase [30,33]. The present
harmonic approximation constitutes the leading-order cor-

rection to j ~c 0i in a systematic expansion in 1=z with z the
number of neighbors (Supplemental Material [32]) [34].
Anharmonic effects are neglected at this level; near criti-
cality, this is qualitatively permissible if the anomalous
exponent� is small [� ¼ 0:03 for the Heisenberg model in
(2þ 1) dimensions]. Their quantitative effect on the dis-
persion can be captured via a renormalization of model
parameters [35]; below, we account for this by specifying
parameters relative to the location of the QPT.

Bilayer magnet.—In the remainder of the Letter, we
illustrate the application of the method to a simple case,
namely, the bilayer Heisenberg model as realized, e.g.,
in BaCuSi2O6 [27–29]. Here, the dimers live on a
two-dimensional (2D) square lattice with interlayer
coupling J and intralayer coupling K ¼ K11

ii0 ¼ K22
ii0 for

nearest-neighbor sites i, i0. In the absence of disorder,
this model is in a singlet ground state for J � K and an

AFM ground state with ordering wave vector ~Q ¼ ð�;�Þ
for J � K, with an O(3) critical point at ðJ=KÞc ¼
2:5220ð1Þ [22]. In the harmonic bond-operator approach,
this transition occurs at ðJ=KÞc ¼ 4; including triplon
interactions allows one to obtain a value very close to the
exact result [21].
With disorder of random-mass type, the character of the

QPT changes, as dictated by the Harris criterion [36].
Numerical simulations have shown that a new critical point
with conventional power-law singularities emerges [37] for
not too strong disorder [38]. Here, we shall focus on the
excitation spectrum in the vicinity of this QPT upon inclu-
sion of disorder where signatures of quantum Griffiths
behavior can be expected [5,6].
Modeling disorder.—We shall mainly employ bimodal

distributions of coupling constants, being experimentally
relevant to cases where chemical substitution modifies
exchange paths as occurs, e.g., in Tl1�xKxCuCl3 [39] or
ðC4H12N2ÞCu2ðCl1�xBrxÞ6 [14]. Provided that all cou-
plings remain AFM, this type of bond randomness does
not introduce frustration, such that the magnetic order
realized for J � K continues to be collinear with wave

vector ~Q ¼ ð�;�Þ. Wewill denote the corresponding order
parameter, the staggered magnetization per spin, by Ms.
Results: weak intradimer bonds and evolution across

QPT.—We now present numerical results of our approach,
for disordered intradimer coupling J, with values J1 and J2
taken with probabilities (1� p) and p, respectively, and
use the interdimer coupling K as a tuning parameter to
access the transition. Energies will be quoted in units of J1,
the system size is N ¼ L2 with L ¼ 64 and additional 22

supercells, disorder averages are performed over Nr ¼ 50
realizations, and the temperature is T ¼ 0.
Results for small concentrations p of weak intradimer

bonds, J2 ¼ J1=2, are in Fig. 1: Figs. 1(a) and 1(b) display
Ms as function of K and p, whereas Figs. 1(c)–1(h)
show the dynamical susceptibility �00ð ~q;!Þ for different
parameter sets. This type of substitution drives the
system towards the ordered phase by decreasing the appar-
ent gap and shifting the QPT to smaller K value upon
increasing p. There is a broad range of parameters with
weak magnetic order, i.e., small nonzero Ms, to be dis-
cussed below.
Introducing a small amount p of disorder into the para-

magnetic clean system causes a transfer of spectral weight
to low energies [Figs. 1(c), 1(f)–1(h), and 2]. Doping cre-
ates excitations inside the gap that eventually induce weak
order upon increasing p. This disorder-induced low-energy
response, although centered around the ordering wave

vector ~Q, is broad in both momentum and energy (except
for Goldstone modes at extremely small !): this reflects
the localization tendency of the corresponding modes
(see Fig. 3). For intermediate p values near 1=2, the spec-
trumvisibly separates into upper and lower branches, which
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exist over the entire Brillouin zone [Fig. 1(e)]; these
branches correspond to modes that are primarily carried
by either the J1 or the J2 intradimer bonds.

We now turn to a detailed analysis of the weak
substitution-induced magnetic order. Figure 3 portraits a
single realization of disorder by showing the spatial distri-
bution of J and the local magnetization Mi as well as the
wave functions for selected eigenmodes of H 2. Several
features are apparent: (i) The system develops islands of
nonzero staggered magnetization [Fig. 3(b)] with a char-
acteristic length scale of �, the correlation length of the
clean reference system. These islands, being rare events in
the sense of Griffiths [7], exist in regions with a greater
concentration of weak interlayer bonds. (ii) The distribu-
tion of local magnetization values becomes broad on loga-
rithmic scales [Fig. 3(f)], a typical fingerprint of Griffiths
behavior. (iii) The low-energy ‘‘magnon’’ modes appear
strongly localized on individual magnetization islands
[Figs. 3(c) and 3(d)]. This behavior persists for essentially
all energies below the gap of the clean reference system,

whereas higher-energy modes tend to be delocalized
[Fig. 3(e)]. We have confirmed this localization tendency
by analyzing the inverse participation ratio (Supplemental
Material [32]).
Taken together, this implies an interesting ‘‘dual’’ nature

of the weakly ordered phase: It displays a sharp Bragg peak

in the static structure factor Sð ~qÞ at ~Q ¼ ð�;�Þ [Fig. 4(a)]
as the underlying order is perfectly staggered (albeit
strongly inhomogeneous). At the same time, the small-!
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FIG. 2 (color online). Momentum-integrated transverse sus-
ceptibility �00ð!Þ, for the bilayer model with random weak
interlayer couplings as in Fig. 1. Disorder tends to close the
spin gap by the transfer of spectral weight to low energies.

FIG. 3 (color online). Bilayer Heisenberg magnet with
K=Kc ¼ 0:92 and a single disorder realization of p ¼ 0:02
weak intradimer bonds with J2 ¼ J1=2, as in Fig. 1(g), with
L ¼ 64. (a) Spatial distribution of J values, indicating the
location of the weak bonds. (b) Corresponding spatial distribu-
tion of the local magnetization Mi. [(c)–(e)] Wave function
amplitudes of selected eigenmodes of H 2. (f) Disorder-
averaged probability distribution of local (staggered) magneti-
zation values for parameters as in (a)–(e).

FIG. 1 (color online). Numerical results for the disordered bilayer Heisenberg model, with a concentration of p weak interlayer
couplings with J2 ¼ J1=2. (a) Phase diagram, showing the staggered magnetization Ms as function of K=Kc for different levels of
disorder p, with Kc ¼ J1=4 denoting the critical coupling of the clean system in the linearized bond-operator approach. A regime with
weak and strongly inhomogeneous order emerges for small p and K & Kc. (b)Ms as function of doping level p for different K values.
[(c)–(h)] Transverse dynamic susceptibility �00ð ~q; !Þ along a path in the 2D Brillouin zone (qz ¼ �) for different combinations of
K=Kc and p. The green dashed lines indicate the dispersion of the clean system with the respective K.
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dynamic response �00ð ~q; !Þ is anomalously broad in q
space, due to the disorder-induced mode localization.
This is shown in Fig. 4(b), where a spin-wave-like two-
peak structure is only visible for extremely small
!=J & 0:02.

Related localization and broadening phenomena have
been observed and discussed both theoretically and experi-
mentally for a variety of random magnets, mainly inside
magnetically ordered [40–46] or quantum-disordered
phases [47,48]. Our results show that, due to Griffiths
physics, low-energy localization tendencies are signifi-
cantly stronger near quantum criticality than those deep
inside stable phases; for an extended discussion, see the
Supplemental Material [32].

Further results.—We have studied other types of disor-
der, with selected results in Fig. 5 and the Supplemental
Material [32]. Depending on the type of disorder, the over-
all triplon bandwidth may either increase or decrease with
doping; the same applies to the apparent gap in �00ð!Þ. For
example, few strong intradimer bonds decrease the width
of the main band (Fig. 5) because coherent triplon hopping
is preempted through the strong bonds. Band splitting such
as that in Fig. 1(e) is visible for sizeable bimodal disorder;
for continuous distributions this is replaced by strong
smearing of intensity. Most importantly, spectral broad-
ening at low energies appears generic near the QPT; this
effect is strongest if the dopants tend to drive the system
towards the ordered phase, as in Fig. 1.

We have also performed calculations for other 2D
unfrustrated coupled-dimer models, with qualitatively
similar results, which thus appear generic.

Comparison to experiments.—Recent experiments
[12,13,15] have studied bond randomness by ligand doping
in spin-ladder materials. INS shows excitations with a
greater energywidth and an increased spin gap as compared
to those of the undoped case. This consistent with our
results for dopants that create locally stronger intradimer
couplings, as in Fig. 5, or weaker interdimer couplings or
both. For the investigated materials, such properties can
indeed be deduced from studies of the end members of the
doping series (Supplemental Material [32]).
Whereas INS data of bond-disordered nearly critical

dimer magnets in 2D or 3D are not available to our
knowledge, it is interesting to connect our results to
La2�xSrxCuO4: at x ¼ 0:145 this compound displays a
field-driven magnetic ordering transition, where INS data
indicate the closing of a spin gap, but in the presence of a
nondiverging correlation length [11]. Since it is known that
La2�xSrxCuO4 shows spatially disordered charge stripes
[49], which in turn lead to modulated magnetic couplings,
our modeling of random-mass disorder can be expected
to qualitatively describe the soft-mode behavior of
La2�xSrxCuO4. Therefore, we propose that quenched
disorder tends to localize low-energy magnetic modes at
the QPT in La2�xSrxCuO4, thus providing a cutoff to the
apparent magnetic correlation length. Disorder is also
expected to cut off one-parameter scaling in �00ð!; TÞ—
this is testable in future experiments.
Summary.—For coupled-dimer magnets, we have pro-

posed an efficient method to calculate real-frequency ex-
citation spectra in the presence of bond randomness across
the entire phase diagram. This allows one in particular to
study magnetic excitations near quantum criticality, where
the effect of disorder is generically strong. Using the
bilayer Heisenberg model as an example, we have studied
disorder-induced spectral weight transfer and weak mag-
netic order. We find strong broadening of low-energy
excitation spectra due the localization tendency of the
relevant modes. Further high-resolution INS experiments,
e.g., on Tl1�xKxCuCl3 [39], which could test our predic-
tions are called for.
Our method can be extended to the case with magnetic

field, in order to access excitations of disordered magnon
Bose condensates, Bose glasses, or disordered supersolids.
A generalization to frustrated dimer lattices and to incom-
mensurate order is possible as well.
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FIG. 4 (color online). (a) Static structure factor Sð ~qÞ and
(b) susceptibility �00ð ~q; !Þ at different ! values, for K=Kc ¼
0:92 and p ¼ 0:02 weak intradimer bonds for L ¼ 128. The

inset in (a) shows the finite-size scaling of ½Sð ~QÞ=ð2NÞ�1=2,
which equals the order parameter Ms in the thermodynamic
limit.

FIG. 5 (color online). Results for the susceptibility �00ð ~q;!Þ as in Fig. 1, but for a density of p strong intradimer couplings with
J2 ¼ 3J1=2.
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