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The impact of impenetrable obstacles on the energetics and equilibrium structure of strongly repulsive

directed polymers is investigated. As a result of the strong interactions, regions of severe polymer

depletion and excess are found in the vicinity of the obstacle, and the associated free-energy cost is found

to scale quadratically with the average polymer density. The polymer-polymer interactions are accounted

for via a sequence of transformations: from the 3D line liquid to a 2D fluid of Bose particles to a 2D

composite fermion fluid and, finally, to a 2D one-component plasma. The results presented here are

applicable to a range of systems consisting of noncrossing directed lines.

DOI: 10.1103/PhysRevLett.111.096401 PACS numbers: 71.10.Pm, 05.30.Jp

The interaction between dense polymer systems and
colloidal particles presents an important and experimen-
tally relevant suite of questions to soft matter science. Even
the issue of a single polymer avoiding a specified obstacle
is technically challenging [1]. Here, our focus is on settings
in which interactions between the polymers dominate the
behavior of the system in the presence of an obstacle. Prior
work in this area includes the study of the polymer free
energy and density profile inside a polymer brush due to
the inclusion of a colloidal particle [2,3].

In this Letter, we analytically address the directed poly-
mer liquid—a strongly interacting system of many thin
thermally fluctuating polymers under tension, which we
represent in terms of directed lines in three dimensions.
As with many investigations of (dþ 1)-dimensional sys-
tems of directed lines, our approach hinges on an analogy
between the statistical mechanics of these systems and the
quantum mechanics of d-dimensional systems of nonrela-
tivistic bosonic particles [4]. This analogy has proven
useful in other work on directed polymers, either under
tension [5] or within a nematic solvent [6], as well as work
on fluctuating line defects in symmetry-broken phases,
such as vortex lines in type-II superconductors [7].

We consider a system of directed polymers that interact
with one another via a strong short-range repulsion, which
we treat as a restriction on the possible configurations
of the directed-line liquid that prohibits the intersection
of any two lines. Central to the present work is the non-
perturbative treatment of this nonintersection restriction,
which we accomplish via the well-known Chern-Simons
transmutation of quantum statistics, from Bose to Fermi.
Using the quantum many-body physics representation, we
address two fundamental questions regarding this system,
viz., ‘‘What are the free-energy cost and equilibrium poly-
mer density induced by an impenetrable inclusion, i.e., a
region in which the polymer density is forced to be zero?’’
We note that the free-energy cost of the inclusion

corresponds to the probability that the system without the
inclusion spontaneously satisfies the condition imposed by
an inclusion. For simplicity, we study thin, flat inclusions
within a planar slice perpendicular to the polymer direction
ẑ, and we determine the equilibrium polymer density
within that slice. More generally, we determine the free
energy and equilibrium density in the presence of spatially
extended constraints, such as a ring positioned in the slice
and threaded by a fixed number of polymers, as shown in
Fig. 1. The inclusion is precisely the case for which no
polymers thread the ring. We emphasize that the dominant
free-energy cost of such constraints is the result of the
many-body effect of the crowding of the polymers, an
effect absent for free directed lines.
The transformation between directed lines and bosons

enables one to harness powerful techniques from quantum
many-body physics for application to directed-line liquids.
The first such application was due to de Gennes, who
invoked it to calculate the structure factor for a (1þ 1)-
dimensional hard-core directed-line liquid [5]. A recent
elaboration on these results by Rocklin et al. yielded the
free energy and equilibriumpolymer density in the presence
of pins and other impenetrable constraints for the same
system [8]. In essence, de Gennes’s strategy separates into
two major steps. First, the classical (1þ 1)-dimensional
noncrossing directed lines are mapped into quantum hard-
core point bosons moving in one dimension [4]. Second,
these hard-core bosons are mapped, exactly, to free fermi-
ons [9]. The virtue of this sequence of transformations,
which we are here seeking to emulate for (2þ 1)-
dimensional systems of noncrossing directed lines, is that
it reduces the strongly interacting directed-line liquid to an
(exactly solvable) systemof free fermions.We accomplish a
similar reduction by mapping our (2þ 1)-dimensional
directed-line liquid to a two-dimensional fluid of Bose
particles, and then make the Chern-Simons transmutation
from Bose to Fermi statistics [10].
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We address a model of the line liquid that consists of N
paths that are directed along the z axis from z ¼ 0 to z ¼ L
via a line tension �, which penalizes deflections of the
paths. We assume no path switchbacks, in which case
the (Cartesian) (x, y) coordinates of the N paths RðzÞ �
frnðzÞgNn¼1 are single-valued functions of z. We study inter-
actions that are short ranged and so strong that they
prohibit configurations in which any pair (n, n0) of lines
intersect, and thus rnðzÞ � rn0 ðzÞ for any value of z. The
statistical weight for noncrossing configurations is then
proportional to expð�G=TÞ, where

G ½Rð�Þ� � �

2

XN

n¼1

Z L

0
dz

��������
drn
dz

��������
2

; (1)

and the temperature T is measured in units of the
Boltzmann constant. Correspondingly, the partition

function Z is given by the functional integral Z ¼R½DRð�Þ�e�G=T , taken over all noncrossing paths.
To implement the mapping to quantum many-body

physics, we note that Z ¼ h�Fje��LH j�Ii; see, e.g.,
Ref. [4]. The quantum Hamiltonian

H ¼ 1

2m

XN

n¼1

jpnj2 (2)

describes two-dimensional Bose particles of mass m under
the correspondence

ð�; TÞ $ ðm; @Þ: (3)

In addition, the quantum amplitudes hRj�I=Fi reflect the
initial and final a priori classical end-point distributions.
The quantum states jRi are symmetrized products of N
single-particle position eigenstates jri, appropriate for
indistinguishable polymers. Observe that the limit L!1
is also the low-temperature limit � ! 1, for which the
quantum ground state dominates Z.
Our focus is on the increase of the free energy

�F (� F c �F u) fromF u (its value in the unconstrained
directed-line liquid) to F c (its value in the liquid with a
spatially extended constraint). We compute �F using the
ratio between the unconstrained partition function Z and
the partition function Zc, which includes the effects of
constraint. If, as in the case we consider, the constraint
requires that exactly Q directed lines pass through some
two-dimensional region D perpendicular to the director ẑ
and far from the ends z ¼ 0, L; then, in the limit L ! 1,
�F may be computed using ground-state dominance as

�F ¼ �T ln
Zc

Z
¼ �T ln

Z

C
dRj�bðRÞj2: (4)

Here, C indicates the constraint on integration that exactly
Q of the N coordinates frng lie withinD. The ground-state
wave function in Eq. (4)�bðRÞ (� hRjGSi) is the lowest-
energy (particle-exchange-symmetric) solution of the
energy eigenproblem H�b ¼ E�b. Thus, we are con-
fronted with the task of finding an expression for j�bj2.
The restrictions rnðzÞ � rn0 ðzÞ on the path integrals for

the line-liquid partition functions Z and Zc demand a
nonperturbative treatment. Following the essence of de
Gennes’s [5] strategy, we transmute the statistics of the
quantum fluid from Bose to Fermi [10], thus arriving at a
description in terms of a many-fermion wave function �f

that necessarily has nodes for any two coincident particles,
i.e., �fðr1; . . . ; r; . . . ; r; . . . ; rNÞ ¼ 0. This transmutation

is accomplished via the well-known [11] singular gauge
transformation of Chern-Simons theory: �b ! �f �
�b expði�

P
n0<n�n;n0 Þ, where �n;n0 � tan�1½ðyn � yn0 Þ=

ðxn � xn0 Þ� is the polar angle between particles n and n0.
Then, under the exchange of particles n and n0, �n;n0 !
�n;n0 � �, and, provided � is an odd integer, �f is anti-

symmetric, i.e., fermionic. As�b is the ground state ofH ,

FIG. 1 (color online). Sequence of transformations of a liquid
of directed polymers subject to a spatially extended constraint,
shown as a ring (thick line), threaded by a fixed number of
polymers. The sequence is used to obtain the free energy and
polymer-density profile of the constrained system. Ultimately,
the directed polymer liquid is transformed to a two-dimensional
one-component plasma, whose Coulomb repulsion results from
integrating out the long noncrossing chains.
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Eq. (2), �f obeys the transmuted energy eigenproblem

[11] H 0�f ¼ E0�f, where

H 0 � 1

2m

XN

n¼1

jpn � qAnðrnÞj2; (5a)

AnðrÞ � �@

q

X

n0ð�nÞ
r0

n�n;n0 ¼ �@

q

X

n0ð�nÞ

ẑ� ðr� rn0 Þ
jr� rn0 j2

: (5b)

H 0 has the same energy spectrum as H , so for any
eigenstate, including the ground state, E0 ¼ E.

If, in Eq. (5a),AnðrnÞ were to depend only on rn and not
on any frn0ð�nÞg, the Hamiltonian H 0 would describe in-

dependent particles in a magnetic field r�A. However,
as shown in Eq. (5b), An does depend on frn0ð�nÞg, which
implies (nonlocal) interactions between all particles.
Equation (5b) states that fAng describes particles that
have � quanta of fictitious magnetic flux attached (i.e.,
localized at the position of every particle, each quantum
carrying 2�@=q flux, where q is a fictitious charge).
Thus, H 0 describes composite fermions—composed of
particles obeying Fermi statistics and flux tubes [12,13].
This transmutation of statistics is the Hamiltonian form of
Chern-Simons theory [14].

This formulation is effectual in incorporating the
hard-core restriction. Moreover, it opens up a pathway
to a natural approximation procedure (see, e.g.,
Refs. [12,13]), which we now describe, for handling the
Chern-Simons interactions [see Eq. (5b)]. Instead of hav-
ing an odd number of flux tubes attached to each particle,
we smear the magnetic field associated with one flux tube
per particle uniformly over the area of the system and
gauge transform away the remaining flux tubes. In this
so-called average field approximation (AFA), the fermions
are noninteracting and subject to a homogeneous magnetic
field r�A ¼ Bẑ, corresponding to one quantum of
magnetic flux per particle. [In the symmetric gauge,
A ¼ Bðy;�x; 0Þ=2.] In the language of directed lines, the
magnetic field is equal to the number of lines per unit area
�0 times a quantum of flux (i.e., B ¼ �02�@=q). In this
magnetic field, the many-body ground state has energy
E ¼ NB@q=2m and the Slater determinant wave function
takes the Vandermonde form [22]

�a
fðRÞ / e�

P
N
n¼1

jwnj2=4‘2 Y

1�n<n0�N

ðwn � wn0 Þ; (6)

where wn � xn þ iyn and ‘ � ffiffiffiffiffiffiffiffiffiffiffiffi
@=qB

p
. Within this ap-

proximation, the quantum ground-state energy and wave
function describe a long, noncrossing-directed-line liquid.
In particular, for the free energy per unit volume of the
unconstrained directed-line liquid, we use the correspon-
dence (3) to obtain the result

Fu

LA
¼ �

�
T2�2

0: (7)

This expression encompasses the thermodynamics of the
polymer fluid. For example, for the (areal) compressibility
� � ½�2

0@
2ðFu=LAÞ=@�2

0��1, we obtain �=ð2�T2�2
0Þ.

As Eq. (6) gives an expression for the ground-state wave
function, we proceed with our goal of calculating the
increase in the free energy �F by using the integral in
Eq. (4). We thus make the approximation j�bj2 � j�a

fj2
and compute �F ¼ �T ln

R
C dR exp½�UðRÞ=T�, where

�UðRÞ
T

� lnj�a
fj2¼ 2

X

1�n<n0�N

lnjrn�rn0 j���0

XN

n¼1

jrnj2:

(8)

Interpreted as a potential energy, U describes a two-
dimensional one-component plasma (2DOCP) [23,24]. In
the general case of the plasma, particles of (e.g., negative)
charge �e inhabit a uniform background that maintains
overall charge neutrality, and they interact via the two-
dimensional Coulomb repulsion: e2 lnjrn � rn0 j. This U=T
corresponds to a specific value, viz., 2, of the plasma
coupling constant e2=T, for which the model is exactly
solvable [24]. Applied to the plasma, the measure

R
C dR in

�F requires exactly Q mobile charges to occupy the
region of constraint D.
This completes our reduction of the three-dimensional

classical liquid of noncrossing directed lines to the classi-
cal two-dimensional one-component plasma (2DOCP);
this reduction enables us to compute physical properties
such as the free-energy cost and the equilibrium density
profiles associated with the imposition of spatially
extended constraints. The long-range planar interactions
within the 2DOCP arise from the short-range interactions
between the fluctuating directed lines, integrated over their
length. To calculate the free energy and the equilibrium
density of the directed-line liquid in the presence of a ring
constraint, we analyze the 2DOCP, first by minimizing
the potential energy and then by using the exact solution
of Refs. [24–28]. Note that the constraint mandates that
there be regions of excess mobile charge and regions
partially depleted of mobile charge. To minimize the elec-
trostatic energy, any excess mobile charge is forced up
against the boundary of D. Moreover, on the other side
of the boundary, a region fully depleted of mobile charge
(i.e., a gap) opens up, out to a radius within which the net
charge is zero [29].
Similarly, at the level of electrostatic energy minimiza-

tion, one can readily determine the energy of the charge
distribution and, hence, the free-energy cost of the con-
straint �F ðQ;Q0Þ, in terms of the mobile charge �Q and
the background charge withinD, i.e.,Q0 (� �a2�0), both
in units of e [27]; see Fig. 2. For the special case Q ¼ 0
(i.e., D empty, corresponding to an inclusion), the free-
energy cost has a simple form
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�F ¼ Q2
0=4 ¼ �2a4�2

0=4: (9)

This electrostatic result is significant for the noncrossing-
directed-line liquid, as it differs qualitatively from the
case of a noninteracting directed-line liquid, for which a
particle inclusion incurs a free-energy cost linear in a2�0;
see Ref. [30].

To improve upon the electrostatic approximation, we
take into account the effect of thermal fluctuations on the
polymer-density profile. We rely on the exact solution of
the 2DOCP with the appropriate plasma coupling constant,
i.e., 2; see Refs. [24–28]. In the limit a 	 1=

ffiffiffiffiffiffi
�0

p
, the exact

density profile outside the region of constraint depends
only on a, �, and Q through the combination ðQ�Q0Þ=ffiffiffiffiffiffiffiffiffi
2Q0

p
[25]. The layer of excess mobile charge on one side

forms an electrical double layer of thickness of order
1=

ffiffiffiffiffiffi
�0

p
; see Fig. 2 and Ref. [25]. The region partially

depleted of mobile charge does develop a soft gap, in
which the charge is small but nonzero. The mobile-
charge-density profile progresses smoothly, according to
a qualitatively error-function-like curve, through the
boundary region, rapidly approaching the value that
exactly compensates the background charge density �0;
see Fig. 2 and Ref. [25]. The mobile-charge-density profile
for the depleted side of the constraint applies to both cases,
Q>Q0 and Q<Q0, and similarly for the excess-charge
side. For Q small relative to Q0, the remaining mobile
charge inD forms a droplet whose shape is essentially the
density profile of a system of electrons that fill the lowest
Landau level: a flat central profile and a decay into the soft
gap [31]. Thus, we have established that when some fixed
portion of the lines of a directed-line liquid is constrained
to thread D, the equilibrium density profile in the slice
containing D is that of the correspondingly constrained
2DOCP.
Recapping our strategy, we progressed from the three-

dimensional liquid of thermally fluctuating lines, to a
two-dimensional quantum many-boson fluid, to a two-
dimensional quantum many-fermion fluid coupled to a
Chern-Simons gauge field, which we treated in the average
field approximation to obtain the filled lowest Landau-level
picture. The phenomenology of a lowest Landau level
filled with noninteracting fermions is well studied and
suggests various analogous phenomena for the correspond-
ing hard-core boson fluid. However, as the AFA is an
approximation, these analogous phenomena may be arti-
facts of the approximation, and we now use physical
intuition to identify any such artifacts. For example, the
quantum Hall effect suggested by the AFA is one such
artifact: the boson fluid does not have broken time-reversal
symmetry and therefore shows no Hall effect [32–34].
A second artifact is suggested by the incompressibility of
the filled lowest Landau level, which would incorrectly
imply the incompressibility of the boson fluid [35]. To
restore the physics of the boson fluid missed at the AFA
level, the residual interparticle interactions encoded in the
corrections AnðrÞ �AðrÞ should be treated, e.g., via the
random phase approximation. In this way, the proper com-
pressibility of the boson fluid can be obtained, as shown
in Refs. [32,33]. A particularly noteworthy consequence
of the residual interactions AnðrÞ �AðrÞ is their ability to
renormalize the effective plasma coupling constant e2=T of
the plasma analogy away from the exactly solvable case,
viz., 2. Nevertheless, we expect the general picture pre-
sented here, of the energetics and structure of the directed-
line liquid in the presence of spatially extended constraints,
to hold.
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FIG. 2 (color online). 2DOCP subject to a spatially extended
constraint. The electrostatic approximation predicts a gap in the
mobile-charge density and an accumulated surface charge for
cases (a), for which the excess mobile charge resides outside
the ring, and (b), for which the excess mobile charge is confined
inside the ring. This approximation also predicts discontinuities in
themobile-charge density, which in the exact solution are smeared
out due to thermal fluctuations of the mobile charges around the
minimum energy state. The exact solution leads to the density
profiles �ðrÞ=�0 shown for ðQ�Q0Þ=

ffiffiffiffiffiffiffiffiffi
2Q0

p ¼ �4 (thick curves)
and 0 (thin curves), where�Q andQ0 ( � �a2�0) are the mobile
and background charges inside the ring, respectively [25,26]. The
inset shows the rescaled energy cost ð4=Q2

0Þ�F [top, case (a);

bottom, case (b)] [27]. The curves arevalid formacroscopic values
of the charge deficiency, i.e., for not-too-small values of the
argument, when �F is dominated by electrostatic energy. In
the text, we establish that these profiles correspond to the in-plane
distribution of noncrossing directed lines due to a planar spatially
extended constraint.
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