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We study the elastic properties of thermal networks of Hookean springs. In the purely mechanical limit,

such systems are known to have a vanishing rigidity when their connectivity falls below a critical, isostatic

value. In this work, we show that thermal networks exhibit a nonzero shear modulus G well below the

isostatic point and that this modulus exhibits an anomalous, sublinear dependence on temperature T.

At the isostatic point, G increases as the square root of T, while we find G / T� below the isostatic point,

where � ’ 0:8. We show that this anomalous T dependence is entropic in origin.
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The stiffness of elastic networks depends on the me-
chanical properties of their constituents as well as their
connectivity, which can be measured by the average coor-
dination of nodes. Maxwell showed that a network of
simple springs will only become rigid once the connectiv-
ity exceeds a critical, isostatic value at which the number
of constraints just balances the number of internal degrees
of freedom [1]. This purely mechanical argument can be
used to understand the rigidity of such diverse systems
as amorphous solids [2], jammed particle packings and
emulsions [3,4], and even some folded proteins [5].
Interestingly, underconstrained systems that are mechani-
cally floppy can become rigid when thermal effects are
present. Perhaps the best known example of this is entropic
elasticity of flexible polymers [6]. Even a single, freely
jointed chain that is mechanically entirely floppy becomes
elastic at finite temperature T: such chains resist extension
with a spring constant that is proportional to T. At the level
of networks of such chains, the macroscopic shear modulus
also grows proportional to T [6,7]. Many systems, includ-
ing network glasses [8–10] and some biopolymer networks
[11–13], can be considered intermediate between a purely
mechanical regime well above the isostatic point and a
purely thermal or entropic regime below the isostatic point.
However, very little is known about thermal effects in such
systems near the isostatic point [14–17].

Here, we show that simple model networks, consisting
of randomly diluted springs, can be stabilized by thermal
fluctuations, even at low connectivity for which they would
be floppy at zero temperature. Interestingly, we find that
the linear shear modulus G exhibits anomalous tempera-
ture dependence both at and below the isostatic point.
Specifically, we find that G / T�, where �< 1. This is
surprising since one might have expected, in analogy with
freely jointed chains, that such networks would exhibit
ordinary entropic elasticity (G / T) below the isostatic
point, as the mechanically floppy modes are excited ther-
mally. Moreover, we find two distinct anomalous entropic

elasticity regimes in the connectivity-temperature phase
diagram, with the Maxwell isostatic point acting as a
zero-temperature critical point (Fig. 1).
We perform Monte Carlo (MC) simulations on 2D

spring networks that consist of N ¼ n2 nodes, arranged
on a triangular lattice, that are connected by Nsp ¼ zN=2

springs, where z is the average connectivity (z ¼ 6 for the
fully connected network). Periodic boundary conditions
are used in all directions. To avoid network collapse [18],
we consider two cases: one in which we keep the system
area A fixed and treat the springs as ‘‘phantom’’ (i.e., we
ignore steric interactions, and hence the springs are poten-
tially overlapping), and one where we fix the system
pressure P and prevent the springs from overlapping
(self-avoiding springs). In both cases, the system energy
is given by

FIG. 1 (color online). Schematic phase diagram of thermal
networks in the T � z representation, where ‘‘reduced T’’ is
the ratio of the temperature to the spring energy and z is the
connectivity, with critical connectivity zc. Reminiscent of
quantum-critical points [39,40], we find a critical regime that
broadens out for temperatures above the T ¼ 0 critical point.

PRL 111, 095503 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

30 AUGUST 2013

0031-9007=13=111(9)=095503(5) 095503-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.111.095503


U ¼ ksp
2

XNsp

i¼1

ð‘i � ‘0Þ2; (1)

where ‘i is the length of spring i, ‘0 is the rest length, and
ksp is the spring constant. In order to lower the connectivity

of the system, we set ksp ¼ 0 for randomly chosen springs.

For the phantom network, this is identical to removing
springs, while for the self-avoiding network, this method
has the advantage of computational efficiency over simply
removing the springs, since springs with ksp ¼ 0 still

contribute steric interactions and hence the nodes are es-
sentially confined to a ‘‘cell’’ by the surrounding springs.

To find the critical (isostatic) point zc, for the onset of
rigidity at T ¼ 0, we use a conjugate gradient algorithm to
calculate G. For 2D networks, zc ’ 4 [1,19], although due
to finite size effects this will be somewhat smaller for each
N value studied [20]. We then increase T in steps and allow
the systems to equilibrate using MC simulations, obtaining
configurations under shear. We note that there is an addi-
tional critical point zP ’ 2:084 [21], corresponding to the
connectivity percolation threshold, below which there is no
connected path through the network. For T > 0, the shear
modulus is finite between zp and zc [16].

In order to shear the systems, we use Lees-Edwards
boundary conditions [22] to apply a shear strain �. The
shear modulus G is then given by

G ¼ 1

A

@2F
@�2

; (2)

where F is the free energy of the system. It is not possible
to directly calculate F from MC simulations, so we
calculate the linear shear modulus G as described in
Refs. [23,24]. Moreover, since G has units of ksp in 2D,

we express G throughout in units of ksp.

At low temperatures, we find that the shear modulus
closely follows the zero-temperature behavior, decreasing
as z is decreased from the fully connected network, in both
phantom and self-avoiding networks [Fig. 2(a)]. Below the
critical point zc, we find that the shear modulus deviates
from the zero-temperature behavior, becoming nonzero
for all finite temperatures. For z > zc the shear modulus
is largely insensitive to temperature, while for z < zc, G
depends strongly on T. For high temperatures, the
shear modulus becomes increasingly insensitive to z and
deviates from the zero-temperature behavior at increas-
ingly high connectivities above zc, until eventually, when
kBT � ksp‘

2
0 (where kB is the Boltzmann constant), the

thermal energy of the system is such that the network
structure becomes unimportant.
The different regimes of the dependence of G on T can

be seen in Fig. 2(b). At high connectivities, the shear
modulus remains almost constant as the temperature is
increased, rising only as the thermal energy kBT
approaches the spring energy ksp‘

2
0. As we approach the

critical point, however, we find that the shear modulus,

which will be 0 at T ¼ 0, shows an approximate T1=2

dependence at low temperatures. This anomalous tempera-
ture dependence is apparent over many orders of magni-
tude and in fact corresponds to the system becoming stiffer
than expected at low T for ordinary entropic elasticity. As
we increase the temperature further, in the self-avoiding

spring networks, we see this T1=2 dependence give way to
linear T dependence, while in the phantom spring net-
works, we see a steeper T dependence, although it does
not become linear. For z < zc, we find another anomalous
regime with G / T�, where � ’ 0:8, at low temperature,
followed by linear T dependence at high temperatures in
both phantom and self-avoiding networks. As we see these
anomalous regimes in both types of network, we conclude
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FIG. 2 (color online). The network shear modulus G in units of ksp for N ¼ 3600 nodes connected by phantom springs of rest length
‘0 ¼ 1. The main plots are for a fixed area A ¼ A0, the area of a relaxed, fully connected network at T ¼ 0. The corresponding results
for self-avoiding springs at P ¼ 0 are shown in the insets. (a) G as a function of z for T� ¼ kBT=ksp‘

2
0 ¼ 10�6 (lower), 10�4, 10�3,

10�2, 10�1, and 1 (upper). The solid line shows T ¼ 0 results. (b) G as a function of T� for z ¼ 6 (triangles), z ¼ 3:857 ’ zc (circles),
and z ¼ 3 (squares). (c) Scaling of the shear modulus using the form G ¼ kspj�zjaF ðT�j�zj�bÞ, where �z ¼ z� zc, for T

� < 10�5.

The two branches on the left-hand side correspond to z > zc (upper) and z < zc (lower). In both systems, the asymptotes and exponents
(a ¼ 1:4 and b ¼ 2:8) are the same.
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that they are not driven by steric interactions but instead by
the random network structure of these low z value systems.
Consistent with this, if we remove bonds in such a way as
to leave one-dimensional chains of springs (i.e., chains
with z ¼ 2) or honeycomb lattices (with z ¼ 3), we find
G / T even at low temperatures, as one would expect for
ordinary entropic elasticity [24].

The observed shear moduli can be well described by a
scaling form analogous to that of the conductivity of a
random resistor network [25] that has also been success-
fully used to describe the shear moduli of athermal spring
and fiber networks [20,26]. For our system, this scaling
ansatz is given by

G ¼ kspj�zjaF ðT�j�zj�bÞ; (3)

where a and b are constants,�z ¼ z� zc, and the function
F is dimensionless, as is its argument. We find the best
collapse of the data at low temperatures (T� ¼
kBT=ksp‘

2
0 < 10�5) for both the self-avoiding and phantom

networks using the exponents a ¼ 1:4 and b ¼ 2:8, as
shown in Fig. 2(c). This again demonstrates the three
low-temperature regimes, with almost constant G for
z > zc, G scaling with kspT

�0:8 (� k0:2sp T
0:8) for z < zc

and G showing kspT
�1=2 (� k1=2sp T1=2) dependence as

�z ! 0. We note that, similar to our findings, a recent
study of athermal fiber networks in two dimensions, with
both filament stretching described by ksp and bond bending

described by stiffness �, found that the shear modulus

scales with k1=2sp �1=2 at the critical connectivity [20].

The nonzero shear modulus we find below zc can be
shown to be entropic in origin. The shear modulus can be
broken down into its energetic and entropic parts as

G ¼ 1

A

�
@2U
@�2

� T
@2S
@�2

�
¼ GE þGS; (4)

where S is the entropy, and both GE and GS can be
calculated during our simulation runs [24]. We first
show the ratio GS=G versus z for the phantom networks
in Fig. 3(a). At low temperature, we see that GS=G rises
sharply as z approaches zc from above, before saturating to
GS=G ’ 1 below zc, corresponding to a dominant entropic
contribution. For z > zc, the energetic contribution GE

dominates, although GS becomes increasingly important
at higher T.

Figure 3(a) suggests that the behavior below the critical
point can be understood in terms of GS alone. Thus, when
considering the origins of the anomalous temperature de-
pendence of the shear modulus observed in Fig. 2, it is
instructive to look at the behavior of @2S=@�2 with
temperature and connectivity. From Eq. (4), it can be
seen that for pure entropic elasticity (where G / T), we
should see @2S=@�2 / T0. In Fig. 3(b), we show GS=T

� ¼
�ksp‘

2
0ð@2S=@�2Þ=AkB against connectivity for a range of

temperatures in a system of phantom springs at constant

area. As can be seen, GS=T
� diverges at low temperatures

as the critical point is approached, both from above and
below zc. In Fig. 4(a), we show GS=T

� versus temperature.

At the critical point, we observe that GS=T
� / T�1=2 at

low temperatures. Similarly, for z ¼ 3< zc, we find that
the low temperature GS=T

� / T�0:2, before becoming ap-
proximately constant at higher temperatures (GS=T

� /
T0). The high value of @2S=@�2 at low temperatures
corresponds to the entropy decreasing more rapidly as
the system is sheared. As noted previously, for honeycomb-
like lattices and ideal chains we find ordinary entropic
elasticity, corresponding to GS=T

� / T0 throughout [24].
Hence, we conclude that the anomalous dependence of the
entropy on shear strain � at low temperatures arises from
the disordered nature of the network, leading to the anoma-
lous temperature dependence of the shear modulus. We
note that we see qualitatively similar behavior of GS=T

�
with T at low temperature for self-avoiding networks, as
one would expect from Fig. 2(b).
A possible origin of this anomalous temperature behav-

ior in subcritical networks could be the internal stress �I

of the network, which in the phantom networks arises
from the resistance to the tension the network is placed
under in order to maintain its area. This tension can be
shown to be proportional to the temperature [24]. As such,
at low temperatures, the shear modulus can be expected, on
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FIG. 3 (color online). (a) The ratio GS=G as a function
of �z for a phantom network at T� ¼ kBT=ksp‘

2
0.

(b) GS=T
� ¼ �ksp‘

2
0ð@2S=@�2Þ=AkB (units of ksp) as a function

of �z for the same systems as above. Results are for A ¼ A0,
N ¼ 3600, and ‘0 ¼ 1.
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dimensional grounds, to scale as G / ��
I k

1��
sp , which

would appear as G / T�k1��
sp in our simulations. A similar

anomalous dependence on stress was found in athermal
networks with disordered molecular motors in Ref. [27].
Interestingly, if one takes the spring constant ksp to be

proportional to T, as would be expected for freely joined
chains linking nodes, then pure entropic elasticity would be
recovered, with G / T and @2S=@�2 / T0. However, if
ksp ¼ cT, where c is a constant, it follows from Fig. 4(a)

that the gradient of G with T would depend on the value
of c. In Fig. 4(b), we show the shear modulus against
temperature for networks with z ¼ 3 and ksp ¼ cT, using

a range of c values. Although all the systems show linear T
dependence, we do see that as c decreases, the shear
modulus becomes smaller, until c & 105, where the results
converge.

Our results demonstrate that there are two distinct
regimes with anomalous temperature dependence of the
shear modulus, as illustrated in Fig. 1. In both cases, the
dependence on T is sublinear. Thus, at low temperatures,
this corresponds to an anomalously large effect of thermal
fluctuations. The natural energy scale in our model is the
spring energy ksp‘

2
0, which can easily be much larger than

the thermal energy, even at room temperature. For protein
biopolymers, for instance, it is expected that ksp ’ Ed2=‘0,

where the diameter d is of the order of nanometers and the
Young’s modulus E can be as large as 1 GPa [28,29],
and hence the spring energy for a segment of length
‘0 ’ 100 nm can be more than 106 times larger than kBT
at room temperature [30]. Hence, for such systems,
reduced temperatures T� in the range & 10�6 can be
relevant and network-level thermal fluctuations can be
much larger than expected based on naive entropic esti-
mates. Importantly, such network-level fluctuations are
almost always ignored in prior fiber network models and
simulations, where either purely mechanical models
[20,26,34–36] or hybrid mechanical models that include
only single-filament fluctuations [37,38] have been used.
Finally, it is interesting to note that our phase diagram in
Fig. 1 is reminiscent of other systems with zero-
temperature critical behavior, such as quantum-critical
points [39,40]. As in such systems, in which the critical
point is also governed by fluctuations other than thermal,
we find a broad critical regime that fans out and extends for
temperatures potentially far above T ¼ 0.
This work was supported in part by a research pro-
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