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In body-centered-cubic (bcc) crystals, 1=2h111i screw dislocations exhibit high intrinsic lattice friction

as a consequence of their nonplanar core structure, which results in a periodic energy landscape known as

the Peierls potential UP. The main features determining plastic flow, including its stress and temperature

dependences, can be derived directly from this potential, hence its importance. In this Letter, we use

thermodynamic integration to provide a full thermodynamic extension of UP for bcc Fe. We compute the

Peierls free energy path as a function of stress and temperature and show that the critical stress vanishes at

700 K, supplying the qualitative elements that explain plastic behavior in the athermal limit.

DOI: 10.1103/PhysRevLett.111.095502 PACS numbers: 61.72.Lk, 02.70.Ns, 61.43.Bn

Dislocations are ubiquitous line defects that mediate
plastic deformation in crystalline materials. In body-
centered-cubic (bcc) metals, plasticity is governed by the
motion of 1=2h111i screw dislocations on close-packed
planes. Generally, this motion is understood to occur
over a periodic energy landscape known as the Peierls
potential UP. Theoretical descriptions of this potential
show that it is very stiff in bcc Fe, leading in some cases
to critical stresses (those at which the lattice resistance is
suppressed) in excess of 1 GPa. However, experimentally,
it is found that the flow stress—the macroscopic equivalent
of the critical stress—is roughly one-third lower than
calculated values. The most convincing explanation for
this discrepancy that we possess currently is the contribu-
tion of zero-point motion to the Peierls potential at tem-
peratures where quantum effects cannot be neglected [1].

At low stresses, one can safely assume that the Peierls
potential remains unchanged and that slip proceeds via the
thermally activated nucleation of steps on the dislocation
line, known as kink pairs, and their subsequent sideward
relaxation. However, at stresses approaching the critical
stress, referred to as Peierls stress�P at 0 K, it is insufficient
to consider only the zero stress internal energy to represent
the Peierls trajectory. This trajectory is defined as the recti-
linear path, denoted by the reaction coordinate x, between
two equivalent equilibrium states (known as ‘‘easy core’’)

on the Peierls potential, which has periodicity h ¼ a0
ffiffiffi
6

p
=3,

where a0 is the lattice constant. Rodney and Proville [2]
showed that at moderate to high stresses, the core undergoes
internal transformations that modify the Peierls energy land-
scape. ThisUPð�Þ, where� is the shear stress resolved on a
f110g plane—applied using the Parrinello-Rahman method
[3]—is provided in Fig. 1 using the nudged-elastic-band
(NEB) method [4] and a standard semiempirical interatomic
force field developed by Mendelev et al. [5]. Although this
force field yields the nondegenerate screw dislocation core
structure, in accordance with density functional theory

(DFT) calculations, it also predicts a metastable split core
configuration known now to be an artifact [6]. The Peierls
potential is then defined by the system enthalpy HPð�Þ ¼
UPð�Þ �Wp, where Wp is equal to the plastic work asso-

ciated with the shear strain in the simulation box. For an
accurate calculation ofWp, the reaction coordinate must be

expressed in terms of the dislocation core position, which is
calculated here by matching the atomic displacement field
to the Volterra solution for a screw dislocation (see the
Supplemental Material [7]). For the model used in Fig. 1,
�P is approximately 1250 MPa as first computed by
Chaussidon et al. [8] (DFT calculations: �1100 to
1400 MPa [9,10]). The inset to Fig. 1 shows the two-
dimensional representation of the NEB trajectory at several
stresses on the (111) plane using a differential displacement
map. The figure shows that as the shear stress increases, the
path approaches one of the h111i atomic rows associated
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FIG. 1 (color online). Peierls potential UP as a function of
stress for the Mendelev interatomic potential for Fe [5]. x
represents the (nondimensional) dislocation core position. Note
that DFT calculations predict a sinusoidal profile with an am-
plitude of �UP ¼ 30� 40 meV=b [10]. The inset to the figure
shows the transition path on the (111) plane taken by the
dislocation at several values of � shown in the main figure.
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with split core configuration. At zero stress, the transition
path is practically rectilinear—consistent with recent DFT
calculations [9,10]—which is a manifestation of the struc-
ture of the dislocation core energy landscape [11].

Tensile tests place the athermal limit of bcc Fe, i.e., the
point at which flow occurs without mechanical aid, at
various temperatures between 300 and 400 K [12–17].
This limit is thought to establish the extent of the validity
of the classical kink-pair mechanism. Kink-pair energies
have been calculated as a function of stress utilizing atom-
istic and line tension models, all of which make use of a
substrate Peierls potential [9,18]. However, despite its
importance, the effect of temperature on the Peierls poten-
tial has not yet been addressed. In this Letter, we generalize
the Peierls enthalpy to finite-temperature conditions by
calculating the Gibbs free energy of atomistic Fe systems
using a combination of periodic (dipole) and cylindrical
configurations containing in excess of N ¼ 12 000 atoms,
as described in Refs. [19,20]. Dislocation segments 5b in

length were considered, where b ¼ a0
ffiffiffi
3

p
=2 is the Burgers

vector’s modulus and a0 � 0:27 nm. The reference con-
figurations used here are those calculated at constant stress
using the NEB method.

Adding T to the natural variables � and N results in the
isothermal-isobaric ensemble, whose characteristic state
function is the Gibbs free energy

G ¼ H � TS;

where S is the entropy, defined in our pure and periodic
systems solely by vibrational contributions. Our objective
is to establish the importance of incorporating tempera-
ture effects into models based on the standard picture of the
Peierls potential and to compute explicitly the athermal
limit from atomistic calculations. To obtain the Peierls free
energy GP, we equate the Peierls transition path to an
activated process described by a general configurational
nonlinear many-body reaction coordinate [21]. As a first
approximation, we first calculate the harmonic free energy
of each configuration along the NEB trajectory as

Gh
i ðTÞ ¼ kT

X
k

2 sinh

�
@!iðkÞ
2kT

�
; (1)

where !ðkÞ are the eigenfrequencies corresponding
to eigenvectors k pertaining to each NEB replica i.
However, as Fig. 2 demonstrates, relatively large mean
square displacements can be measured already at 100 K
along the reaction coordinate, particularly within the initial
15% of the Peierls trajectory. Such anharmonic behavior is
a manifestation of a pathology of the Mendelev force field,
which results in a transition path at 0 K that may not reflect
the true finite-temperature dynamics of the system. Gh has
been calculated for comparison (see the Supplemental
Material [7]), nonetheless, and following Proville et al.
[1], to account for zero-point motion at low temperatures.
We shall discuss this correction in later paragraphs.

Our method to compute full, anharmonic free energies is
based on Kirkwood’s approximation to obtain the potential
of mean force [22]. Assuming a Hamiltonian of the type
H ¼ p2=2mþUðqÞ, where p and q are the generalized
momenta and coordinates, respectively, one can write the
Gibbs free energy as

G ¼ � logZ
�

¼ � 1

�
log

Z
dqdp expf��H ðq;pÞg

¼ � C
�

log
Z

dq expf��UðqÞg; (2)

whereZ is the canonical partition function,� ¼ 1=kT (k is
Boltzmann’s constant), and C is a constant that represents
the integrated contribution of the kinetic energy and the
elastic work. If one now extracts the (NEB) trajectory
degree of freedom (DOF) x from the 3N-dimensional
vector q and separate them in Eq. (2), we have

G ¼ � C
�

Z
dx

�
log

Z
dq0 expf��Uðq0; xÞg

�

¼
Z

dxGðxÞ; (3)

where U0 ¼ Uðq0; xÞ and GðxÞ are the internal and free
energies for the (3N � 1) DOF system defined by gener-
alized coordinates q0. The force along the trajectory can be
evaluated as

�dG
dx

¼ C
�

d

dx

�
log

Z
dq0 expf��Uðq0; xÞg

�
: (4)

The quantity SðxÞ ¼ C
R
dq0 expf��Uðq0; xÞg can be

regarded as the configurational partition function of the
(3N � 1) DOF system, and, therefore, Eq. (4) can be
written as

� dG
dx

¼ 1

�

d logSðxÞ
dx

¼ 1

�SðxÞ
dSðxÞ
dx

: (5)
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FIG. 2 (color online). Time-averaged atomic mean square
displacement along the Peierls trajectory (up to 45% of the
reaction coordinate) at zero stress. Areas with large hr2i indicate
anharmonic behavior. The unstressed UP is shown as a dashed
gray line for reference.
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Furthermore,

dSðxÞ
dx

¼ ��C
Z

dq0 expf��Uðq0; xÞg dUðq0; xÞ
dx

;

which, when inserted into Eq. (5), results in

dG
dx

¼
R
dq0 expf��U0g dU0

dxR
dq0 expf��U0g ¼

�
dU0

dx

�
; (6)

which is a configurational average over all (3N � 1) DOF.
In other words, the free energy of the constrained system is
obtained by integrating the time-averaged total force along
the minimum free energy path (see the Supplemental
Material [7]).

Using Eq. (6), we now calculate free energies for the
different trajectory points of the NEB calculations in our
atomistic systems. Configurational averages are numeri-
cally intensive and require long simulation times to con-
verge (on the order of several nanoseconds in our case).
The resulting free energies for the unstressed configura-
tions are shown in Fig. 3 at temperatures ranging from 100
to 600 K. Gh

P at 0, 100, and 200 K are also included for
comparison. Two features are noteworthy at first glance:
(i) the characteristic metastability associated with the split
core configuration at 0 K is lost following constrained
equilibration at finite temperatures, and (ii) the free ener-
gies suffer a marked decrease from 0 to 100 K. We find that
�GP vanishes completely by 700 K at zero stress.
Technically, the current force field for Fe is strictly valid
above the Debye temperature and below the Curie transi-
tion (470 & T & 1040 K). However, Proville et al. have
shown that quantum effects in this context are only impor-
tant below 40 K [1], and so our results over the 100–700 K
temperature range are within the validity margins of the
potential.

As mentioned above, the double-hump shape of the
Mendelev interatomic force field as given by the NEB

method is a consequence of the metastability of the split
core configuration at 0 K. By contrast, DFT calculations
show that the energy path displays a simpler sinusoidal
profile [6,9]. Gilbert et al. have performed a detailed
numerical construction of the two-dimensional energy
landscape for the Mendelev potential on the f111g plane
[11]. Their analysis revealed anomalies in the standard
NEB path at 0 K. At finite temperatures, the system
escapes the NEB path and samples a broader region of
phase space until falling into an alternate dynamic path.
This path is the one shown in Fig. 3 at different tempera-
tures. This behavior explains the long convergence times
and the large anharmonicities captured in Fig. 2 as the
system samples alternative phase space trajectories. In any
case, at 100 K, both the harmonic and full free energy
curves mimic one another for 0< x< 0:15, which indi-
cates that within that interval, the minimum potential and
free energy paths are similar. At higher temperatures, the
range of agreement gradually decreases, as more and more
of the barrier is subject to anharmonic effects.
Next, we study the variation of the free energy barrier

�GP with temperature and stress. When UPð�Þ displays a
weak or no dependence on the stress, the dependence of
Peierls enthalpy on � is via the temperature-independent
plastic work Wp ¼ �bhx (per unit length). This is shown

to be an accurate approximation for �< 500 MPa
(cf. Fig. 1). In such a case, one need only consider the
temperature dependence of the unstressed Peierls trajec-
tory (given in Fig. 3) and subtract Wp to obtain GPð�;TÞ.
From this, �GP is measured at each stress and temperature
and each value plotted in Fig. 4. We term this approxima-
tion GPð0Þ [or �GPð0Þ if referring to free energy barriers].
The figure reveals several interesting features. First, the
free energy decreases by more than 50% from 0 to 100 K.
Subsequently, it decreases gradually until it vanishes. This
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FIG. 3 (color online). Peierls free energy path at zero stress as
a function of temperature. The harmonic free energies at 100 and
200 K are also shown as dashed lines for comparison. At 700 K
and above, the barrier is at or below zero.
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FIG. 4 (color online). Variation of the free energy barrier �GP

with temperature and stress. Solid lines correspond to �GPð0Þ,
which is valid up to � 400 MPa. Scatter points represent
�GPð�Þ, i.e., the free energies for the stress-dependent potential
obtained from NEB. In the latter case, the free energy is strictly
zero for � � 400 MPa.
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latter point furnishes the critical stress ��, i.e., that at
which �GPð��;TÞ ¼ 0. Second, the curves at different
stresses roughly mimic one another within the envelope
of the zero stress results, which is an indication that
the dynamic path is stable. Much in the manner of
Proville et al. [1], adding zero-point corrections reduces
the value of �GP at low temperatures for all stresses. For
clarity, this effect is not shown in the figure but will be
taken into account when computing the critical stresses.

To verify the assumption of stress independence for
the Peierls potential at 0 K below � 500 MPa, we have
performed free energy calculations on stressed transition
paths at stresses 100 to 400 MPa. The results as a function
of temperature are shown as scatter points in Fig. 4. As
shown, the agreement between �GPð0Þ and the stressed
configurations [�Gð�Þ] is reasonable up to 300 MPa. From
the data points presented in Fig. 4, we can extract the
values of �� at each temperature. These are shown in
Fig. 5, where the corresponding harmonic values are
displayed for comparison. At 0 K, including zero-point
motion results in �q

P � 650 MPa, which we use as a

common point ( joined by dashed lines) for all the curves.
The critical stress vanishes at T ¼ 700 K, which represents
the athermal limit within our model. This is higher than
experimentally observed, but our results show that the
mere consideration of temperature effects leads to impor-
tant changes in the dynamic picture of screw dislocations.
As an example, at 100 K,�� � 400 MPa, which represents
a 60% reduction with respect to the value of �P at 0 K.

The data provided in Fig. 5 are a central result of this
Letter and reveal two main behaviors related to the Peierls
potential. As referred to earlier, tensile tests in pure Fe show
that the temperature dependence of the flow stress is char-
acterized by the critical stress at (very) low temperatures
(<4 K) and the athermal limit at high temperatures. In the
absence of quantum corrections, atomistic calculations,

even of the most accurate kind, fail to predict the lower
temperature limit, while there is no numerical work avail-
able providing information for the higher one. The present
calculations show that a formal treatment of the free energy
may account for dramatic reductions in both limits using
conventional interatomic force fields. Indeed, these calcu-
lations provide a closed set of data for defining a
temperature-dependent substrate potential to be used in
higher level models such as line tension or kinetic
Monte Carlo simulations, etc. We believe the implications
of this work to be of importance to all bcc metals. It is worth
emphasizing that the nonsinusoidal nature of UP from the
force field employed here is not a weakening aspect of this
work because finite-temperature trajectories sample paths
in phase space that are not affected by the existence of the
split core configuration at 0 K. This may explain why most
molecular dynamics simulations of screw dislocation mo-
tion using the present interatomic potential show only
correlated (in the sense of Gordon et al. [23]) formation
of kink pairs [24,25] at finite temperatures.
To conclude, we have presented a free energy map of

the 1=2h111i screw dislocation core transition on f110g
planes. The calculations have been done using constrained
reaction coordinate dynamics and reveal a drastic reduc-
tion in free energy barrier and critical stress with increasing
temperature. Our results can serve as yet another platform
from which to interpret the discrepancies observed
between atomistic simulations and macroscopic flow stress
measurements.
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