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Extension of a Suspended Soap Film: A Homogeneous Dilatation Followed by
New Film Extraction

Jacopo Seiwert, Martin Monloubou, Benjamin Dollet, and Isabelle Cantat

Institut de Physique de Rennes, UMR 6251 CNRS/Université de Rennes 1, 35042 Rennes Cedex, France
(Received 2 April 2013; published 26 August 2013)

Liquid foams are widely used in industry for their high effective viscosity, whose local origin is still
unclear. This Letter presents new results on the extension of a suspended soap film, in a configuration
mimicking the elementary deformation occurring during foam shearing. We evidence a surprising two-
step evolution: the film first extends homogeneously, then its extension stops, and a new thicker film is
extracted from the meniscus. The second step is independent of the nature of the surfactant solution,
whereas the initial extension is only observed for surfactant solutions with negligible dilatational moduli.
We predict this complex behavior using a model based on Frankel’s theory and on interface rigidification

induced by confinement.
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Liquid foams are very dissipative materials, with an
exceptionally high ratio between their effective viscosity
and their density. For this reason, they are widely used for
blast wave mitigation [1,2] or as drilling fluid in the oil
industry [3], among other examples. However, the local
processes leading to this high energy dissipation have not
been entirely elucidated yet [4]. The dissipation rate is
strongly enhanced by the confinement of the viscous liquid
phase in thin films and menisci and it is extremely sensitive
to the interfacial properties. Consequently, it depends on
the local film thickness and on the interfacial stresses
and velocities, acting as boundary conditions for the flows.
These quantities are in practice impossible to measure
in situ in a 3D sheared foam, making the prediction of
the dissipation rate in such a system particularly
challenging.

Local flow models at the bubble scale have been
developed, leading to predictions at the foam scale
which can be compared to experimental data [5-8].
However, direct measurements of the film thicknesses
or deformations at the bubble scale are still sparse
[9-15], although they are necessary to discriminate the
very different assumptions made by the models on the
local flow. Recent studies have established the relation
between the interfacial rheology of foaming solutions
and the bulk rheology of foams [16-18]. Interfacial
rheology may be characterized by a dilatational modulus
E;, which relates relative interface area variations to
interfacial stresses and which can span several orders
of magnitude. Two limiting cases are traditionally con-
sidered: (i) “Rigid” surfactants feature large values of
E, (when compared to the surface tension) and exhibit
incompressible interfaces [19], while (ii) ‘“‘mobile”
surfactants exhibit stress-free interfaces.

Physically, interfacial stresses mainly arise because
stretching (or compressing) an interface leads to changes
in the interfacial concentration of surfactants and hence to
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surface tension gradients. These gradients relax through
the exchange of surfactants between the interface and the
bulk, whose typical time scale depends on several pro-
cesses: adsorption or desorption of surfactant molecules,
diffusion, micelle dynamics, etc. Ej is thus not an intrinsic
property of the solution but depends on the time and space
scales of the method of measurement. From a practical
standpoint, it is still unclear which of these two limiting
models (incompressible and stress free), if any, will apply
for a given experimental situation and a given surfactant
solution because the relevant value of E,; is in general
unknown.

Film area increase is one of the key processes occurring
during foam shearing, along with film formation (after a
bubble rearrangement), film shearing, and film area
decrease. The linear response of a liquid film under
oscillatory extensional strain has been precisely measured
[11,20], but large extensional deformations involve
entirely different, nonlinear processes which are the
scope of this Letter. We show that the area increase of a
preexisting thin film subjected to a large extension is
mainly due to the extraction of a fresh film from the
meniscus and not to an uniform extension of the preexist-
ing film. The fresh film thickness quantitatively obeys
Frankel’s law, which quantifies the extraction of a soap
film from a bath, assuming incompressible interfaces
[21]. This behavior is observed for all tested surfactant
solutions, independently of their dilatational moduli.
However, the area of the preexisting film slightly
increases during a first step, with a relative area variation
that strongly depends on the nature and on the concentra-
tion of the surfactants. We argue that this initial extension
modifies the surface tension in the film and thus produces
the resistance required to pull the Frankel’s film out of
the meniscus. This two-step process evidences a transi-
tion between a compressible behavior of the interfaces
at small strain and an incompressible behavior at
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FIG. 1 (color online). Top: side view of the experiment before
(left) and during (right) stage motion. The darker band in the
center of the image is the Plateau border. Bottom: corresponding
top views, under white illumination (used for illustration: the
thickness measurements are made with monochromatic light). It
shows the old thin film with heterogeneous bright colors, sur-
rounded by the thicker new film that appears uniformly gray.

larger strain for solutions usually leading to mobile inter-
faces without measurable resistance to compression or
dilatation.

The experimental setup, shown in Fig. 1, features three
axisymmetric soap films: a circular horizontal film which
we study and two catenoids used to suspend it between two
metallic circular rings (22 mm in diameter). The radius of
the horizontal film increases when the distance between the
rings decreases [11,22]. These three films meet at a menis-
cus (Plateau border), as within liquid foams.

A typical experiment proceeds as follows: the films are
created, then let at rest. The Laplace pressure in the Plateau
border is lower than in the flat thin films because the
Plateau border is concave, inducing slow film drainage.
The horizontal film thickness reaches a quasiuniform value
hg, in the range 0.5-1.5 pm, after typically 20-60 s. The
horizontal film radius R is then increased from 7 to 10 mm
by moving the lower ring at a constant velocity U in the
range 0.05-50 mm/s. The lateral film profile is monitored
by a first camera (see Fig. 1, top). The interference pattern
produced in the horizontal film by a monochromatic lamp
is recorded with a second camera (Fig. 1, bottom), giving
a time-resolved map of the relative thickness of the film.
A local absolute thickness reference is provided by a
synchronized reflective interferometer. Additionally, the
small thickness fluctuations act as passive tracers [23]

TABLE I.

and provide qualitative information on the velocity field
in the film.

The radius of curvature r,, of the Plateau border was
varied between 0.2 and 2.0 mm by adding or withdrawing
liquid with a syringe. We used three solutions (73, 7’13,
and T25; see Table I) with tetradecyltrimethylammonium
bromide (TTAB) as a surfactant. TTAB is a soluble sur-
factant and has a typical adsorption time of 3 ms [12],
which leads to mobile interfaces in most foam experi-
ments. The fourth solution used a mixture of sodium
lauryl-dioxyethylene sulfate (SLES), cocoamidopropyl
betaine (CAPB), and myristic acid (MAc), specifically
developed to produce rigid interfaces. Measures with the
oscillating bubble method give E; <1 mN/m for (T)
solutions and E; = 320 at 0.2 Hz for (D) [12,19].

Upon retraction of the Plateau border, two successive
regimes, schematized in Fig. 2, are observed when using
the TTAB solutions. During the first step (0 <t <t¢,), the
film initially present (thereafter denoted ‘““old film”’) under-
goes a homogeneous extension, as attested by the motion
of the thickness fluctuations. For ¢ > ¢, (second step), the
old film extension ceases and the subsequent increase in
area is entirely compensated for by a thicker film extracted
from the Plateau border, denoted ‘“new film.” This new
film consists of a transition region of characteristic length /,
followed by a region of length [ and of approximately
constant thickness, with a smooth maximum #h*. As
observed in Fig. 1 (bottom right), these old and new films
are well distinguishable during the entire experiment, and
the film radius R can be decomposed unambiguously into
three terms R = r + [ + [, with r the old film radius. For
the solution (D), only the second step has been observed.

Let us first focus on the new film. We measured 4" while
varying systematically U, and r,, for the different solu-
tions. Figure 3 shows that it strictly obeys h* = hj, with
hy = 2.68r, Ca?/? the thickness predicted by Frankel
[21]. Here, Ca = nU/y is the Capillary number and U
the meniscus velocity. Although Frankel’s law has been
observed previously when a soap film is withdrawn
from a liquid bath, our measurements are to our knowl-
edge the first made in a configuration relevant to foams,
with Plateau borders as liquid reservoir. In particular,
the radius of the Plateau border r,, was varied over a
decade.

The film of maximal thickness h* is extracted from the
Plateau border at time ¢*. Ca* = nU(t*)/y is measured at

Solutions properties. Glycerol (10 vol%) is added to every solution, leading to a

viscosity 7 = 1.4 mPas. The TTAB critical micelle concentration (c.y,) is 3.8 mmol/L.

Solution Composition Surface tension y (mN/m)
T3 TTAB (14.8 mmol/L = 3c ) 35
T13 TTAB (63.9 mmol/L = 13c¢.p.) 35
125 TTAB (128 mmol/L = 25¢.,c) 35
D SLES (0.30), CAPB (0.15), and MAc (0.05) (in wt %) 23
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FIG. 2 (color online). Top: horizontal film profiles along a
radius, from the meniscus to the film center, at different times.
The dashed and dotted lines are schematic representations of the
film at ¢ = O, initial time; ¢t = ¢,, end of the old film extension;
and t = ¥, end of the new film transient. The solid line is the
numerical result of Eq. (1) for a time ¢ > ¢*. Bottom: radius of
the old film r as a function of time for U; =5 mm/s and
solution T'13. It saturates at r, = r(z,).

this time. The best accuracy (* 10%) on r;, = r,,(¢*)
was obtained by fitting the meniscus profile at t =0
with its theoretical shape (taking into account corrections
due to axisymmetry and gravity) and by deducing r;, from
the meniscus volume conservation (277'Rr%1 1S constant,
neglecting the volume injected into the new film).
Finally, a fit of the form h* = Kri,Ca**? gives
K=27=*0.1.

The transition region is not described by Frankel’s the-
ory, which only considers a steady state in the meniscus
frame. We thus developed an unsteady theoretical frame-
work based on the same assumptions to predict / [24]. The
problem is solved in the Plateau border frame, assuming
invariance in the z direction. A thin film of initial uniform
thickness i,[= h(z,)] is pulled out of a meniscus of radius
r,, at a velocity U in the x direction (see Fig. 2, top). In the
lubrication approximation, and assuming that the interfa-
cial velocity is U everywhere, the dimensionless equation
of evolution written for the film half-thickness H(X) =
h(x)/hp is

0 *H
o _ ——(H3—3 + H), (1)
oT aX X

with X = 2x(3Ca)'/3/hy and T = 2¢(3Ca)'/3U/hp.

10
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FIG. 3. Thickness h* of the withdrawn film rescaled by the
Plateau border radius as a function of the Capillary number Ca*,
for different surfactant solutions. The gray value of each symbol
is proportional to ry,, from 0.2 mm (black) to 2.2 mm (white).
Data collapse on Frankel’s law (solid line): iy/r%, = 2.68Ca*?/3.

Frankel’s theory predicts the steady state shape of the
film Hp(X) by setting 3,Hr = 0 in Eq. (1) and imposing
Hp(X — +00) = 1. On the meniscus side (X — —o0), the
curvature of this solution reaches the constant value 0.643.
Matching with the meniscus curvature 1/r,, imposes
Frankel’s law hy = 2.68r,, Ca?/3.

We solved the time-dependent equation, using as an
initial condition a profile with the required curvature at
X — —oo (that is maintained constant in time) and a
constant thickness H, <1 at X — +oco. A flat film of
thickness H = 1 emerges from the meniscus and connects
to the initial film through a well-defined transition region
of length / (defined as the length of the region encompass-
ing 90% of the height variation). The profile obtained
for H, = 0.3 and T = 20 is plotted in Fig. 2 (top) for X
in the range [ — 8; 22]: with these values of the parameters,
[ = 8.9r,, Ca!/3. Numerics showed that the variation of [
with H, (less than 20% in the range [0.2-0.8]) and T (less
than 1% in the range [15-30]) are well below our experi-
mental dispersion; hence, we compared all our experimen-
tal data with the previous expression, finding a good
agreement (Fig. 4).

These results indicate that both the steady state thickness
and the transition region of the new film exactly follow
Frankel’s theory. Our data thus evidence that all the tested
solutions are able to generate incompressible interfaces.
This incompressibility is ensured by surface tension gra-
dients, mainly arising from variations in the surface excess
of surfactants I', which balance bulk viscous stresses. For
solution (D), these gradients form as soon as the interface
stretches, independently of the subsurface concentration.
In contrast, for (7T') solutions, surface and bulk concentra-
tions equilibrate faster than the experimental time scale.
Surface tension gradients thus imply bulk concentration
gradients, which appear in our system because of confine-
ment effects: the film is thin enough that it does not contain
many more surfactants than the interfaces, and is thus
easily depleted [25]. It is also large enough that diffusion
from the Plateau border is negligible (the typical bulk
diffusion time is 10° s). The observed rigidification is
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FIG. 4. Length [/ of the transition region between the initial
film and Frankel’s film (rescaled by r},), as a function of Ca*
(color coding is identical to Fig. 3). The solid line is the
numerical prediction /7%, = 8.9Ca*!/3. Inset: magnified view
of the film featuring the interference pattern obtained with a
monochromatic light. Each fringe increment corresponds to a
thickness variation of 0.2 um.

thus a striking illustration of the fact that surfactant behav-
iors do not exclusively depend on their intrinsic properties
but also on the length and time scales involved [15,26].

The surface tension variation needed to pull the new film
out of the Plateau border can be deduced from Frankel’s
calculation [21,27]

Sy _vr—vp _ 3.8Ca?/3, 2)

Y Yp

where yp and yr are the surface tensions in the Plateau
border (where it is equal to the equilibrium surface tension
of the foaming solution) and at the end of the new film
(i.e., in the old film). The old film surface tension must thus
increase to allow extraction of Frankel’s film, with a rela-
tive variation in the range [10~#~1072] for Ca in the range
[107°-1073].

The surface tension variation obeys 8y = 2E;8r/r,
with ér = r, — r, as defined in Fig. 2. From Eq. (2), we
find 8r/ry ~ 1072 at Ca = 1073 for (D) solutions, which
is consistent with the absence of measurable extension of
the old film. In contrast, the E,; value measured in uncon-
fined geometry is irrelevant for (7') solutions. It would lead
in the same conditions to 8r/ry > 1, which is not compat-
ible with the measured extension.

To predict the area increase of the old film for (7T)
solutions, we must take into account the absorption of
surfactant from the volume on the newly created interface,
which lowers the bulk concentration in the film and leads to
an increase of its surface tension. Let us consider a film of
initial radius r( and thickness 4, with a bulk concentration
of surfactant ¢y = acp. (@ > 1). We consider surfactants
with small adsorption time, for which bulk and surface
concentrations remain at equilibrium, and we assume that
there is neither solution nor surfactant exchange with the
Plateau border during the entire stretching. The surface
tension is constant for ¢ > c,.. Below the critical micelle
concentration (cmc), y decreases with ¢ in a way that is
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FIG. 5 (color online). Old film maximal extension 6r = r, —
ro rescaled by rohgy/l.me as a function of Ca for the three TTAB
solutions (averaged over several three series of various r,, for the
T25, the error bars representing the standard deviation). Solid
lines are the best fits of each curve with the prediction (3) using
K, =0.15mNm’/mol®, a3 = 1, a3 = 1.3, and a5 = 3.5.

difficult to predict or measure with the required accuracy.
A good agreement with the experimental data is obtained
by assuming that y = yepe + K, (¢ = Ceme)® for ¢ < ceme,
which is the simplest function smoothly matching the
condition y = Y. for ¢ > c.y.. The required surface
tension variation is thus obtained for a concentration varia-

tion 8c¢/cope =1 — a — \lay/Ky/ccmC‘

A surfactant mass balance then relates dc to or. At
first order in &r, 8r/rg = —hySc/(4l.pcCeme)s Where
leme = Deme/Ceme = 1 pm. We used the fact that T' =

Ceme = 3.6 X 107 mol/m> for TTAB [28]. Using
Eq. (2), we obtain
1) h 3.8
T 0 (g4 22 mecqis) (3
o 4lcmc yccmc

We plotted in Fig. 5 the old film extensions measured as
a function of Ca, for the three solutions of type (7). The
parameter o of Eq. (3) was fitted for each solution and a
good agreement was obtained for a3 = 1, a3 = 1.3, and
a5 = 3.5. These values are lower than the initial bulk
concentrations (a = 3, 13, and 25, respectively), which
can be explained by the initial drainage process, known to
reduce the concentration in the film [29,30]. The parameter
K, was optimized globally for the three different solutions,
with a best fit value K, = 0.15 mN m’/mol?.

In summary, we evidence in this Letter a homogeneous
extension regime of surfactant films at small strain. This is
in agreement with the linear relationship between stress
and strain rate measured on surfactant films subject to
small amplitude oscillatory forcing [11]. At larger strain,
we evidence a second regime, which is perfectly described
by a rigid interface model. This is the Frankel’s regime,
known to lead to a sublinear relation between stress and
strain rate [6]. The elementary deformation that we study
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may contribute significantly to the global dissipation in
foam under steady shear, especially at high shear rate,
when the dissipation directly associated to topological
rearrangements is not dominant. Our results are therefore
an important step toward improving models of foam
rheology.
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