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Harnessing Optical Vortex Lattices in Nematic Liquid Crystals
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By creating self-induced vortexlike defects in the nematic liquid crystal layer of a light valve, we
demonstrate the realization of programable lattices of optical vortices with arbitrary distribution in space.
On each lattice site, every matter vortex acts as a photonic spin-to-orbital momentum coupler and an array
of circularly polarized input beams is converted into an output array of vortex beams with topological
charges consistent with the matter lattice. The vortex arrangements are explained on the basis of light-
induced matter defects of both signs and consistent topological rules.
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Optical vortices are singular points where the electro-
magnetic field goes to zero and around which the phase
forms an n-armed spiral profile, with n the topological
charge [1-3]. In low-order Gauss-Laguerre beams, a single
optical vortex corresponds to a phase singularity on the
axis of the beam. Vortex beams attract a lot of attention in
view of their applications [4], including the exchange of
angular momentum between light and matter [5], optical
tweezers [6—8], quantum computation [9], data transmis-
sion [10], and enhancement of astronomical images [11].
To date, optical vortices were generated mainly by using
spiral phase plates [12] or diffractive elements [13,14]. The
introduction of ¢ plates, planar elements with a preset
radial director orientation [15], as well as the exploitation
of umbiliclike defects [16] in nematic liquid crystals has
opened new promising avenues, these approaches provid-
ing both tunability and high efficiency. Direct optical trap-
ping of liquid crystal defects, first reported in nematics [17]
and then extended to other textures, as cholesterics and
smectics [18], was also demonstrated. However, the align-
ment of the incoming beam with the ‘“vortex-making”
element remains critical in certain conditions, for instance,
in the presence of atmospheric turbulence as required by
coronagraph applications [19]. By exploiting reorienta-
tional nonlinearities in the nematic liquid crystal (LC)
layer of a light valve, we have recently realized vortex
beams that are self-induced, and hence, self-aligned with
the impinging light beam [20]. In this Letter, we show that
a similar approach can be successfully exploited to create
closely packed lattices of optical vortices with arbitrary
and reconfigurable geometric distributions. As long as LC
reorientation occurs only in the illuminated areas (which
happens for relatively low amplitudes of the voltage
applied to the light valve), the vortices on adjacent lattice
sites are independent from one another and all have the
same sign. Conversely, when reorientation occurs in the
whole liquid crystal layer (for increased applied voltages),
all the vortices become tightly coupled together, leading to
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the spontaneous generation of defects with opposite signs
in between adjacent lattice sites. The resulting vortex
arrangements are consistent with simple topological con-
servation rules accounting for the reconnection of reorien-
tation lines in the distorted nematic layer. Similar rules
were recently reported in topological colloids, where par-
ticles of various shapes were introduced in a nematic host
[21], as well as in nematic samples submitted to magnetic
fields created by small magnets [22]. Remarkably, in our
case, all the topological reconnections are reconfigurable,
optically addressable, and tunable via the voltage applied
to the light valve. Moreover, the induced defect lattices act
as arrays of photonic spin-to-orbital angular momentum
couplers with both signs of the topological charge.

The vortex induction process is schematically repre-
sented in Fig. 1(a). The liquid crystal light valve (LCLV)
is filled with a nematic mixture exhibiting negative dielec-
tric anisotropy Ae = g — & <O0. In such a valve, the
transparent interfaces are treated in order to provide the
homeotropic alignment of the liquid crystals, that is, with
the nematic director (optic axis) perpendicular to the con-
fining walls, one of which is a photoconductive Bi;,SiO,
(BSO) slab. Owing to this photoconductive substrate, when
the LCLV is illuminated by a Gaussian light beam, the
effective voltage drop across the LC layer acquires a bell
shaped profile, peaked in the center of the illuminated area
and able to overcome the critical value of the Fréedericksz
transition for which the molecules start to reorient owing to
the torque exerted by the electric field [23]. As we employ
a liquid crystal with Ae < 0, the torque exerted along the
short molecular axis is larger than that on the long axis;
therefore, the molecules tend to (re)align perpendicularly to
the electric field, leading to a 277-degenerate reorientation and
the formation of topological defects in the nematic texture
[24]. Besides, the Gaussian profile of the incoming beam also
produces a transverse component of the electric field, thus
giving rise to an effective potential able to pin the topological
defect close to the optical intensity peak [20,25].
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FIG. 1 (color online).
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Schematic representation of (a) optical vortex self-induction and (b) spin-to-orbital angular momentum

transfer through the induced defect: An RHP (LHP) beam is converted into an LHP (RHP) beam with a phase singularity of charge
—2 (+2); experimental interferograms are shown beside the respective panels. (c) A matter defect observed under crossed polarizers
(left); spatially resolved polarimetry (middle); reconstructed molecular organization (right). (d) Spin-to-orbital angular momentum
conversion efficiency measured versus voltage bias and for various input intensities.

The created defect, in turn, couples orbital and spin
components of the optical angular momentum; hence, the
outgoing beam acquires a helical wavefront. The matter-
defect—optical-vortex duality and their mutual coupling are
illustrated in Fig. 1(b). An input Gaussian beam produces a
vortexlike distribution of the LC molecules (a defect) and,
because of the different phase retardations undergone by
ordinary and extraordinary waves, a right-handed (left-
handed) RHP (LHP) circularly polarized beam gets
transformed into a Gauss-Laguerre beam of opposite po-
larization and carrying a phase singularity of topological
charge —2 (+2). Actual snapshots of output beams
with spiraling interference fringes are shown beside the
respective panels in Fig. 1(b). The opposite signs of the
optical vortices are revealed by the opposite rotations of
the spiral arms. The matter defect was initially character-
ized by observing it under crossed polarizers [left panel of
Fig. 1(c)]. The black cross appearing in these conditions is
the signature of a umbiliclike defect, which can be pro-
duced by two different types of deformations of the ne-
matic texture, corresponding to =1 signs, or winding
numbers, of the defect [26]. In order to discriminate the
sign of the defect, we carried out spatially resolved polar-
imetry [27]: using quarter-wave plates, we analyzed the
local birefringence and reconstructed the phase distribu-
tion around the defect [central panel of Fig. 1(c)]. The
polarimetric profile shows that the defect is, indeed, umbil-
iclike and of winding number ¢ = +1. Note that the
reconstructed phase is proportional to 26, with € the liquid
crystal tilt in the transverse plane; therefore, the 47 phase
jump around the singularity indicates a 27 change of the

LC tilt angle 6. Correspondingly, the reconstructed mo-
lecular organization in the transverse plane has an azimu-
thal distribution [right panel of Fig. 1(c)]; hence, the defect
acts as a ¢ plate, to which a Jones matrix can be associated
[28]. It can be shown that for a circularly polarized input
é, = (a/\2)(% + io¥), where a is the amplitude and
o= +1 (—1) stands for the LHP (RHP), the exit
field is given by &, = acos(8/2)é, + expRigaé)
aexpiab,)sin(6/2)é_,; that is, the incoming circular
polarization is converted to the opposite one with a helical
phase exp2igé through a conversion factor sin?(8/2), &
being the overall phase shift between ordinary and extraor-
dinary components. The conversion efficiency, measured
by recording the intensity of the output (converted) beam
for different input powers, is plotted versus voltage bias in
Fig. 1(d). For small input powers, the Fréedericksz thresh-
old is large due to the voltage drop over the BSO slab. For
higher powers, the vortex appears sooner due to the
increased conductivity of the BSO. In each curve, the first
peak is reached when & is an odd multiple of 7. Saturation
occurs at high voltages.

In order to describe the mechanism of the optical vortex
self-induction, we have derived from first principles a
forced Ginzburg-Landau equation [25]

yd,A = nA — aAlA]> + KV3A + AKa, ,A

E(r, .
L pEnD g (1)
Z

where A is the amplitude of the LC director field
deformation, u is the bifurcation parameter describing
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the Fréedericksz transition, a is the saturation parameter,
b = Ae2d/m, E. and E, are the longitudinal, respectively,
transverse electric fields, 9, = d, + id, is the derivative
on the transverse (x, y) plane, V| = s 2 is the longi-
tudinal coordinate, K = (K; + K,)/2, and AK = (K| —
K5)/2 accounts for the elastic anisotropy K;, i = {1, 2, 3}
being the LC elastic constants. Without the last two terms,
the above equation is the well-known Ginzburg-Landau
equation, a prototype model widely employed to describe
dissipative vortex dynamics [2]. The inclusion of the last
two terms accounts for the elastic anisotropy of the LC and
the effective electric potential induced by the light imping-
ing on the photoconductor, which are responsible for the
pinning of the matter vortex at the center of the illuminated
areas [20].

The setup for generating vortex lattices is sketched in
Fig. 2. The beam of a diode-pumped frequency-doubled
solid-state (DPSS) laser at wavelength A = 532 nm is
expanded, collimated, and directed to a spatial light modu-
lator (SLM). The SLM is computer driven by intensity masks
(an example is shown in the inset, the lattice period is 0.5 mm,
and the diameter of the vortex core is 1.2 uwm) which,
through a lens, are imaged onto the BSO side of the LCLV.
The vortex beams at the LCLV output are recorded by a CCD
camera. In order to observe the whole orientational structure
inside the LC layer, the LCLYV is also illuminated by white
light and the transmitted field is imaged at the CCD plane.
Polarizers and red filters discriminate the green vortex beams
from the white light transmitted through the valve. A He-Ne
laser at wavelength A = 632 nm is used to realize an inter-
ferometer, through which the phase singularities are
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FIG. 2 (color online). Experimental setup. Obj, objective; BS,
beam splitter; M, mirror; SLM, spatial light modulator; NDF,
neutral density filter; F, filter transmitting the red components of
the white light source for background illumination of the sample;
POL, polarizer; HWP, half-wave plate; QWP, quarter-wave plate;
PH, pinhole; L, lens; and CCD, charge-coupled device camera.
Bottom inset: Example of square modulation mask as input to the
SLM. Upper inset: Enlarged view of the sample observed under
crossed polarizers when illuminated by the square grid (bright
spots from the DPSS green laser) and white light background; on
the left is an enlarged view of a single vortex.

visualized by making the whole vortex lattice interfere with
an expanded collimated beam.

Defect lattices were generated with various symmetries
and spatial distributions, specifically designing the inten-
sity masks for the SLM in order to achieve close packing of
the vortices. Examples of hexagonal vortex lattices are
displayed in Fig. 3. At low voltage, the vortices are
independent from one another and can be individually
addressed [Figs. 3(a) and 3(b)]. When the voltage is
increased, adjacent vortices become coupled through reor-
ientation in the whole nematic background. Because of the
topological constraints associated with the reconnection of
reorientation lines, two (initially generated) adjacent vor-
tices of equal sign induce a vortex of opposite charge in
between them. An example of fully connected network of
vortices with alternating signs is visible in Fig. 3(c).
Figure 3(d) presents the interferogram obtained with a
plane reference wave. The spatially resolved polarimetry
of the vortex distributions in Figs. 3(e) and 3(f) shows the
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FIG. 3 (color online). Hexagonal vortex lattices: (a) Laser
intensity distribution V = 19 V; (b),(c) white light images under
crossed polarizers, (b) independent vortices V =18 V and
(c) fully coupled lattice V =122V; (d) interferogram
V=12V; and (e),(f) spatially resolved polarimetry,
(e) V=22V and (f) V =18 V. The dashed lines mark the
lattice structure, and the circles indicate the positions of the
addressing light spots; the input intensity is 7 = 250 uW /cm?.
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FIG. 4 (color online). Vortex lattices with various spatial dis-
tributions; the images were taken through crossed polarizers;
input intensity / = 250 uW/cm?. Squares for (a)~(c) V = 14,
18, 22 V, hexagons with a defect in the center for (d)-(f) V = 14,
18, 22 V, and Penrose lattice for (g)-(i) V = 14, 18, 22 V.

sign of each vortex by the direction of circulation of the
phase arms.

Employing suitably designed intensity masks, we real-
ized vortex lattices with various distributions. Figure 4
shows the cases of square, Penrose, and hexagonal lattices
with a topological frustration in the center. Again, as the
bias was increased from low to high voltages, we observed
the transition from independent vortices to a fully con-
nected network of adjacent vortices of alternating signs. In
hexagonal lattices, a topological frustration is induced by
addressing a defect in the center of a hexagonal cell. If this
is done when the fully connected network is already estab-
lished, the addressed defect undergoes a topological frus-
tration with respect to the defect with opposite sign that
was present at the same site. As a consequence, the
unmatched reorientation lines reorganize themselves and
give rise to a transient unwinding dynamics of the defect
spiral arms, until the system is able to self-heal into a
stationary configurational tradeoff [29].

Figures 5(a) and 5(b) display a numerical simulation
of the vortex structure obtained by using the three-
dimensional molecular director dynamics, illustrating,
respectively, the molecular orientation around the defect
core and the energy density of the associated deformation.
Figure 5(c) shows the numerical solution of Eq. (1) [25]:
the two initially addressed (by Gaussian beams) ¢ = +1
vortices appearing in the middle of each illuminated
area spontaneously induced an additional ¢ = —1 vortex
between them, owing to the topological constraints that
force the reconnection of adjacent orientation lines in the
nematic texture. These constraints could be exploited to
establish the experimental induction of a ¢ = —1 vortex,
thereby demonstrating spin-to-orbital angular momentum
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FIG. 5 (color online). Numerical distribution of (a) the mo-
lecular director and (b) energy density around the defect; lengths
are normalized to the cell thickness. (¢) Simulated vortex struc-
ture and spatial arrangement; two +1 vortices are initially
addressed, with a —1 spontaneously appearing in between
them. (d) Experimental demonstration of spin-to-orbital angular
momentum transfer. Left panels: A ¢ = +1 defect is created in
the center of an illuminated area; a ¢ = —1 defect is generated
in between two spots. Central (right) panels: For an input LHP
(RHP), the ¢ = +1 defect yields an optical vortex with charge
—2 (+2), and the ¢ = —1 defect produces an optical vortex
with charge +2 (—2).

transfer for ¢ = *1 matter defects, as shown in Fig. 5(d)
for individual lattice sites (the extension to all lattice sites
is cumbersome but straightforward). A ¢ = +1 defect is
created in the center of an illuminated area, whereas a
g = —1 defect is generated in between two adjacent illu-
minated spots. Correspondingly, for a LHP input, the
g = +1 (g = —1) defect produces an optical vortex of
topological charge —2 (+ 2); for a RHP input, the g = +1
(g = —1) defect yields an optical vortex of charge
+2 (—2). Noteworthily, manipulation and control of
optical vortices can be achieved either by changing the
polarization of the input beam or by employing matter
defects with opposite signs.

In conclusion, we have shown that optical vortex lattices
can be realized in a liquid crystal light valve. The optical
vortices are driven by their counterparts in the nematic
texture, where umbiliclike defects are created in closely
packed configurations of various geometrical distributions.
Every defect on each lattice site acts as a spin-to-orbital
momentum coupler and can be harnessed either via optical
addressing or by tuning the voltage applied to the light
valve. These photonic structures, easily reconfigurable and
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self-healing, can encompass the parallel processing of a
large number of optical signals.
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