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Surface plasmons on metals can concentrate light into subnanometric volumes and on these near atomic

length scales the electronic response at the metal interface is smeared out over a Thomas-Fermi screening

length. This nonlocality is a barrier to a good understanding of atomic scale response to light and

complicates the practical matter of computing the fields. In this Letter, we present a local analogue model

and show that spatial nonlocality can be represented by replacing the nonlocal metal with a composite

material, comprising a thin dielectric layer on top of a local metal. This method not only makes possible

the quantitative analysis of nonlocal effects in complex plasmonic phenomena with unprecedented

simplicity and physical insight, but also offers great practical advantages in their numerical treatment.

DOI: 10.1103/PhysRevLett.111.093901 PACS numbers: 42.70.�a, 42.25.Bs, 78.67.Bf

Light incident on metallic nanoparticles excites surface
plasmons, and these in turn can concentrate the light into
subnanometer crevices or corners, giving rise to massive
local energy density. This effect may be exploited to
enhance spectroscopies or nonlinear phenomena [1,2].
On the near-atomic length scale, the finite Fermi wave-
length of electrons is a significant factor and any screening
charge at an interface is smeared out over the Thomas-
Fermi screening length. This nonlocal response contrasts
with the usual assumption (valid on length scales � 1 nm)
that the screening charge sits precisely at the interface, and
limits the degree to which light can be concentrated [3,4].
It also greatly complicates a theoretical treatment of sub-
nanoscale light. First-principles methods [5,6] describing
the electron-ion dynamics in metals are available, where
purely quantum mechanisms emerge naturally [7–9].
However, the enormous number of degrees of freedom
involved prevents their application to realistic devices.
This has given rise to an increasing interest in the develop-
ment of semiclassical approaches which, retaining the
physical insight and predictive value of classical electro-
dynamics, incorporate nonlocal effects into Maxwell’s
equations. For decades, the hydrodynamic model [10]
has been extensively used to reflect the impact of non-
locality in the optical properties of tiny metal structures
[11–22]. To describe the smearing of induced charges at
the metal boundaries, this model requires the implementa-
tion of spatially dispersive dielectric functions, which
increases significantly the difficulty of the theoretical treat-
ment, especially when dealing with realistic nanostructure
geometries.

Here we show that what at first appears to be a complex
effect can be represented by an extremely simple model:
the effects of nonlocality can be reproduced to a high
degree of precision by a model that replaces the nonlocal
metallic surface with an effective local metallic surface
coated with a dielectric layer. Not only does this render
computation a much simpler process, but also, and of

greater importance, the new model allows us to bring to
bear on nonlocal problems all our intuitive understanding
of local systems, making for greater creativity and inven-
tion at the subnanometer scale.
It is well known that two particles are indistinguishable

if they present the same scattering and extinction proper-
ties, both in the near and far field, and irrespective of the
incident radiation. Inspired by this fact, we intend to find a
general prescription for a virtual local structure which
replaces a nonlocal plasmonic system and whose optical
response can be easily described within the framework of
conventional electromagnetics (EM). Thus, our starting
point is the simplest geometry possible: a single metal-
dielectric interface as the one depicted in Fig. 1(a). Within
the conventional nonlocal description, the reflection and
transmission from this structure can be obtained through
the hydrodynamic model [19]. In this model, the metal
is characterized by a spatially dispersive permittivity ten-
sor of components "Tð!Þ ¼ "1 �!2

P=½!ð!þ i�Þ� and
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FIG. 1 (color online). Schematics of a metal-dielectric inter-
face within (a) the nonlocal description and (b) the LAM, where
the surface charge smearing is mapped into a dielectric cover
layer. Panel (c) plots the layer permittivity over its thickness
as a function of the incident frequency for a gold Drude fitting.
Note that the horizontal axis is normalized to the plasma
frequency !P.
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"Lðk; !Þ ¼ "1 �!2
P=½!ð!þ i�Þ � �2jkj2� for trans-

verse and longitudinal EM fields, respectively. Here, �
and !P denote the metal damping and plasma frequency,
and the � factor, proportional to the Fermi velocity, mea-
sures the degree of nonlocality. Owing to the spatially
dispersive character of "Lðk; !Þ, the excitation of longitu-
dinal plasmon modes below !P is possible. This greatly
complicates the calculation, as compared with the local
approximation. To avoid the implementation of a
k-dependent permittivity, we next explore the possibility
of mapping the nonlocal smearing of induced surface
charges into a thin dielectric layer placed on top of the
metal boundary [see Fig. 1(b)]. In what follows, we term
the resulting system as the local analogue model (LAM).

Exploiting the fact that the excitation of longitudinal
plasmons mainly affects the surface charge distribution
across the metal boundary, our approach assumes that
this nonlocal delocalization can be effectively described
through the alteration of the material properties close to the
metal-dielectric interface. In the LAM, EM fields are
purely transverse, and the bulk metal permittivity is given
by "m ¼ "Tð!Þ. We next look for the thickness and dielec-
tric function of the cover layer so that the LAM yields the
same transmission and reflection properties as the original
nonlocal system. Note that the analogy must hold both in
the near and far field, independently of the incident fre-
quency and parallel wave vector. Detailed derivations pro-
vided in the Supplemental Material [23] demonstrate that
this requirement can be fulfilled as long as (i) the thickness
�d of the dielectric cover is much smaller than the metal
skin depth, and (ii) the dielectric constant of this layer "t is
proportional to �d and obeys the following condition:

"t
�d

¼ "b"mqL
"m � "b

; (1)

where "b is the dielectric constant of the background, and

qL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

!2
P="1 �!ð!þ i�Þ

q

=� is the longitudinal plas-

mon normal wave vector, which is inversely proportional
to the decaying length of the surface charges. Note that the
small �d constraint can be relaxed by considering an
anisotropic cover layer, whose tangential permittivity van-
ishes, while the normal component conforms to the �d
dependence given by Eq. (1). To simplify our theoretical
study, we give details of this possibility in the
Supplemental Material [23], and consider here only the
isotropic LAM in the following discussion. Without loss of
generality, we assume that the metal is gold, with fitting
parameters "1 ¼ 1, !P ¼ 3:3 eV, � ¼ 0:165 eV, and
� ¼ 0:0036c. Figure 1(c) plots "t=�d from zero to the
bulk plasma frequency, where its imaginary part has a
negative value. This indicates that the dielectric layer can
be interpreted as an effective gain medium in this fre-
quency range. However, since the loss in the metal is
dominant, the whole bilayer system is still lossy.

It is the aim of this work to demonstrate that Eq. (1) is
universal and that the dielectric cover extracted from it
describes accurately the emergence of nonlocal effects in a
variety of plasmonic systems, provided that the metal
thickness is larger than the Thomas-Fermi wavelength
(� 0:15 nm for gold [24]). Note that the dielectric layer
is not uniquely defined, as only the ratio between its
permittivity and thickness is fixed as Eq. (1). Thus, we
can set �d as a constant and allow the permittivity to vary
with frequency. This is equivalent to effectively modifying
the material properties close to the metal boundary.
Alternatively, we can assume "t ¼ 1 and obtain a
frequency-dependent thickness. This can be interpreted
as a geometric shifting of the metal-dielectric interface.
Our approach clarifies which of these two models mimics
better the spatial nonlocality.
We explore the validity of the two interpretations above

by investigating the dispersion characteristics of the sur-
face plasmon polariton (SPP) mode supported by the
metal-insulator-metal geometry in Fig. 2(a). The corre-
sponding LAM geometry is depicted in Fig. 2(b). Both
LAMs (one with an effective cover layer of a constant
thickness, �d ¼ 0:1 nm, and one with a constant permit-
tivity, "t ¼ 1) are considered. Importantly, the cover layers
in both cases are placed at the structural interfaces and
extend into the metal regions, in such a way that the gap
width remains the same as in the original geometry.
Figure 2(c) shows the comparison of the SPP bands for a
gap width d ¼ 1 nm calculated using four different
approaches. The cyan dashed line and green circles plot
the local and nonlocal hydrodynamic results, respectively,
where we observe the well-known spectral blueshift due to
nonlocality [19]. The predictions obtained from our LAMs
are rendered in red solid (constant thickness) and gray
dotted (constant permittivity) lines. On the one hand, the
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FIG. 2 (color online). Schematics of a gold-air-gold geometry
within (a) the nonlocal picture and (b) the LAM. Panel (c) shows
the comparison of the SPP dispersion relation obtained from
different models for a gap size d ¼ 1 nm. Omitting the loss is
not essential to our calculations, but gives a more critical test of
our theory.
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model assuming constant �d agrees perfectly with the
conventional nonlocal calculations over the whole fre-
quency range. This implies that the modification to the
material permittivity at the metal boundaries describes
successfully the emergence of nonlocal effects in the ge-
ometry. On the other hand, the calculations based on "t¼1
yield a good comparison with nonlocal predictions only
well below the surface plasmon frequency, and fail to
reproduce the nonlocal blueshift of the SPP band. We
can conclude that the interpretation of nonlocal effects as
a geometric shifting of the metal boundaries is valid only at
low frequencies, where the surface charge thickness (given
by 1=qL) is much smaller than the metal skin depth.

The local description of spatial dispersion in metal
permittivities simplifies drastically the theoretical treat-
ment and offers physical insight into plasmonic phe-
nomena in complex geometries. To illustrate this, we
consider first a dimer of gold nanowires separated by a
small gap, as shown in the inset of Fig. 3(b). Previous
theoretical studies showed that this structure can be treated
using a quasianalytical transformation optics approach
[25,26]. However, once nonlocal effects are taken into
account, the problem becomes much more complicated
and only an approximate treatment is possible [27]. This
is because "Lðk; !Þ associated with the longitudinal field is
not preserved under conformal transformations. Our LAM
solves this problem as it eliminates the implementation of

"Lðk; !Þ. Using the constant �d approach, the exact solu-
tion can be found through the manipulation of a tridiagonal
matrix. Using the "t ¼ 1 assumption, the smearing of
surface charges is simply mapped to the geometric modi-
fication, and we obtain a simple closed-form formula for
the absorption cross section and field enhancement. See
detailed discussions of these two approaches in the
Supplemental Material [23].
Figures 3(a) and 3(b) show the absorption and gap field

enhancement spectra for gold nanowire dimers with R ¼
10 nm. The distance between the nanowires is set as 0.2 nm
(results for other separations are provided in the
Supplemental Material [23]). Four sets of calculations are
performed, i.e., the local analytical calculations [26], non-
local hydrodynamic simulations [22], LAM with �d ¼
0:1 nm, and LAM with "t ¼ 1. Calculations based on
constant �d are again in excellent agreement with numeri-
cal simulations for all frequencies. The shifting boundary
approach ("t ¼ 1) also yields accurate predictions for the
lowest resonance sustained by the structure, whereas at
higher frequencies, this method leads to approximate spec-
tra, presenting only slight deviations from the numerical
results. In other words, the LAM evidences that the non-
local effect here can be interpreted as adding a separation
between the two nanoparticles. Thus, the field enhance-
ment cannot be infinitely increased even for touching
cylinders. This point is illustrated by Figs. 3(c) and 3(d),
which show that, as recently reported experimentally [3],
spatial nonlocality truncates the continuous redshift expe-
rienced by the plasmonic resonances, setting as well the
limit for EM enhancements for separations above the
quantum tunneling regime [28–30].
Our approach does not only facilitate the description of

nonlocality in plasmonic phenomena which can be tackled
in an analytical fashion, it also makes possible a more
efficient numerical treatment of these effects in nanopar-
ticle geometries where such analytical description is not
possible. Using the finite element method, the implemen-
tation of the nonlocal hydrodynamic model requires the
simultaneous solution of both Maxwell’s equations and the
transport equation for the nonlocal current [20–22]. In
contrast, the LAM can be straightforwardly solved within
any commercially available EM simulation platform.
Apart from this evident simplification, our method is
more convenient than the hydrodynamic treatment in terms
of technical aspects such as the memory consumption and
the calculation time. In the Supplemental Material [23], a
comprehensive comparison is provided between both
methods for the case of 3D gold nanoparticles of sizes
ranging from 2 to 100 nm.
Figure 4 displays the numerical absorption (a) and the

field enhancement (b) spectra for a three-dimensional gold
conical dimer. The geometry of the dimer is sketched in the
top right inset of panel (a). Note that all the geometric
edges are chamfered with a 2 nm rounding radius, which is
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FIG. 3 (color online). Optical response of a gold nanowire
dimer within different treatments. (a) Absorption spectra for a
pair of 10 nm radius gold nanowires separated by a � ¼ 0:2 nm
gap. (b) Electric field enhancement versus incident frequency
evaluated at the gap center for the same dimer geometry as in
panel (a). (c) The absorption cross section normalized to the
dimer physical size obtained from Eq. (2) as a function of !=!P

and � (here R ¼ 10 nm). (d) Egap=E0 versus frequency and gap

size. In all cases, the cyan dashed lines (green circles) corre-
spond to local (nonlocal hydrodynamic) calculations. The red
solid (grey dotted) lines plot the predictions from the LAM for
constant �d (constant "t).
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close to the realistic situation. The left inset of Fig. 4(a)
depicts the absorption spectra for a single isolated conical
nanoparticle. In all cases, four different sets of data are
shown. Local (conventional nonlocal) results are plotted in
the cyan dashed line (green circles). The predictions from
the LAM with �d ¼ 0:1 and 0.01 nm are rendered in the
gray dotted and red solid lines, respectively. Our method is
in excellent agreement with the hydrodynamic calcula-
tions, reproducing the blueshift experienced by the plas-
monic resonances and the field enhancements at the gap
center with high accuracy. In order to further demonstrate
the validity of our LAM in the near field, the insets of
Fig. 4(b) display the electric field amplitude map within
the gap region at resonance (! ¼ 0:35!P). The upper and
lower insets correspond to our approach for �d ¼ 0:1 nm

and the hydrodynamic simulation, respectively. The linear
color scale ranging from 0 (blue) to 160 (red) is the same in
both cases. We can observe that the LAM describes accu-
rately the near-field characteristics of the nanostructure,
failing only to reproduce the electric field profile within the
metal regions. Here, we highlight that for the geometry
considered in Fig. 4, our method was 1 order of magnitude
more efficient (in terms of both time and memory) than the
hydrodynamical treatment.
So far, we have demonstrated the validity of the LAM in

predicting the surface modes below !P. It can also be
applied to study the bulk longitudinal plasmon resonances
featured by small isolated nanoparticles at high frequencies
[18,31,32]. Detailed studies (provided in the Supplemental
Material [23]) show that for nanoparticles with radius of
curvature comparable to the Thomas-Fermi wavelength,
Eq. (1) should be amended by

"t
�d

¼ "b"mqL
"m � "b

i0nðqLRÞ
inðqLRÞ ; (2)

where inð�Þ and i0nð�Þ are the modified spherical Bessel
function of the first kind and its derivative, respectively.
Note that, as expected, Eq. (2) reduces to Eq. (1) in the
limit R � 1=qL.
In the Supplemental Material [23] (Fig. S7 and Fig. S8),

we plot the absorption spectra for freestanding gold nano-
spheres with different radii. The results demonstrate that
our LAM not only reproduces the nonlocal blueshift expe-
rienced by the low frequency surface mode, but also pre-
dicts the occurrence of bulk longitudinal plasmon
resonances above !P, which are absent in the local ap-
proximation. In our model, these resonances result from
the positive oscillating value of Imð"tÞ above the bulk
plasma frequency (see the insets of Fig. S8).
Finally, let us remark that the local analogue strategy

introduced in this work is not limited to the framework of
the nonlocal hydrodynamic model. A similar methodology
can be applied to more sophisticated mesoscopic treat-
ments of quantum effects in plasmonics. In this context,
electron spill-out [33,34] may give rise to a negative di-
electric function for the cover layer, which accounts for the
quantum tunneling effect. We leave detailed investigation
of these effects for a later paper.
We have presented a local analogue model able to reflect

the impact of nonlocality in the optical response of plas-
monic structures. This model enables us to investigate
realistic devices with angstrom-sized features within the
classical electrodynamics framework. We have shown that
the smearing of induced charges owing to nonlocality can
be simply mapped into a geometric modification at low
frequencies. On the other hand, through the effective alter-
ation of the material permittivity at the structural bounda-
ries, nonlocal effects in arbitrary plasmonic systems can be
accurately described over the whole frequency range.
Finally, we have demonstrated that our approach not only
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FIG. 4 (color online). Numerical treatments of a 3D conical
dimer within different models. (a) Absorption spectra for three-
dimensional gold conical dimers with geometric parameters as
shown in the top right inset of the panel. All the geometric edges
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plots the absorption cross-section for a single conical nano-
particle. (b) Field enhancement spectra evaluated at the gap
center for the same structures as panel (a). The insets compare
the electric field map at the gap region obtained numerically
from the nonlocal hydrodynamic treatment (bottom) and the
LAM with �d ¼ 0:1 nm (top).
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provides a new understanding of plasmonic phenomena at
the -nanometer scale, but also offers great practical advan-
tages in their theoretical treatment, which will be of value
in further studies of related phenomena, such as van der
Waals interactions and nanoscale heat transfer.
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