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We apply the quantum jump approach to address the statistics of work in a driven two-level system
coupled to a heat bath. We demonstrate how this question can be analyzed by counting photons absorbed
and emitted by the environment in repeated experiments. We find that the common nonequilibrium
fluctuation relations are satisfied identically. The usual fluctuation-dissipation theorem for linear response
applies for weak dissipation and/or weak drive. We point out qualitative differences between the classical

and quantum regimes.
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The quantum jump (QJ) method, also called the
Monte Carlo wave function technique, was developed in
the early 1990s [1-4]. This development followed a series
of experiments performed in the mid 1980s that reported
the observation of QJs in ions [5-7], in conjunction with
theoretical work concerning the nature of these jumps
[8-10]. Subsequent experiments in quantum optics [11]
have probed QJs associated with the birth and death of
photons in a cavity. Averaging of many individual quantum
trajectories is equivalent to solving the relevant master
equation [3,12,13]. More recently, the QJ method has
also been used to address issues related to measurements
and entropy production in quantum systems [14-18].

In this Letter we propose to use the QJ method as an
efficient means to discuss the problem of determining the
statistics of work in driven quantum systems with dissipa-
tion, currently a topic of intense discussion [19,20]. In
particular, unlike for classical systems [21,22], the full
statistics of work and the resulting nonequilibrium fluctua-
tion relations are still not well established for quantum
systems. We approach the problem by constructing quan-
tum trajectories based on the QJ method, and demonstrate
the validity of nonequilibrium fluctuation relations in a
driven two-level system (qubit) coupled to a dissipative
environment. Using the same technique we discuss the two
lowest moments of work in driven evolution. Figure 1
presents schematically the setup we consider. A two-level
quantum system is driven by a classical source exerting
work W on it. The system is also coupled to a thermal bath,
with which it can exchange heat Q. The dynamics of the
two-level system is determined by the combined action of
the source and the environment.

We start by considering the driven two-level system in
the absence of dissipation, described by the Hamiltonian

Hg = —hwyo./2 + X@)(o; + 0_), @))

where o, is a Pauli matrix and o, = |e)(g| and
o_ = |g)e| are the raising and lowering operators in the
ground |g)—excited |e) state basis of the undriven system,

0031-9007/13/111(9)/093602(5)

093602-1

PACS numbers: 42.50.Lc, 03.65.Yz, 05.30.—d, 05.40.—a

hwy=E,—E, is the energy separation of the two levels,
and A(7) is the drive signal of the source. A normalized
quantum state | ¢ (¢)) describing this system at arbitrary time
t can always be written as a superposition of the states |g)
and |e): | (1)) =a(t)lg)+ b(r)le) with |a(0)]>+|b(#)*=1.
The infinitesimal time evolution of such a state is governed
by the equation

| (e + An) = [1 — iAtHg/R]| 4 (1)), 2)

which conserves the normalization.

Next consider the driven two-level system coupled to a
bath with which it can exchange photons of frequency w , .
For definiteness, we assume the system-bath coupling
Hamiltonian H to have the linear form

He=Yc,o.b, +chblo_. 3)
o

Suppose that at time ¢ the total system is in a state
[ (1)) = [a(D)lg) + b(1)le)] @ |0); 4)

i.e., the two-level system is in a generic superposition state,
and the bath is in a state without any excess photons. At a
slightly later time ¢ + Az we have

lg(r + AD) = O + Ay + [¢D( + A1)
+ gD+ A), (5)
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FIG. 1 (color online). A quantum two-level system (center)
driven by an external force (left) and coupled to an environment
(right).
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where
|y O + An)) = [a(r + Ap)lg) + b(t + Ar)|e)] ® |0),
(6)

lp O+ A0y =Y B, lgy®ln, +1), ()
M

G+ Ay =D B, ley@ln, —1). ()
y22

We assumed At to be short enough that at most one photon
is exchanged with the bath. The various components there-
fore involve only 0, 1, or —1 excess photons . The
amplitudes B, .+ can be obtained using standard time-
dependent perturbation theory with respect to H; to the
lowest order one finds [23]

SIB.P=16@PT AL Y IB, - P=la@)T;AL,  (9)
“ u
where

27
r, = 72(% + Dlc,?8(hwy — hw,),  (10)
M

27
Iy = 7Zn#|cﬂ|25(hw0 — ho,,) (11)
o

are the photon emission and absorption rate, respectively.
Here we assume that the time step Az is short compared
to the relevant time scale of the dynamics of the two-
level system, yet long compared to the bath’s correlation
time so that energy conservation is accurate [24]. Note that
I'}/T| = e A" (detailed balance), provided the bath
remains in thermal equilibrium at all times, such that
n, = (ePron — 171

In order for |4 (¢ + A1) [Eq. (5)] to be normalized, we
have to impose (O + ANy Q@+ Ar))y=1— Ap,
where

Ap = Afla()]’T; + [b(0)*T]. (12)

This can be achieved by modifying the standard time
evolution into a non-Hermitian one, replacing in Eq. (2)
the Hamiltonian Hg by

H = Hg — inl'||e)Xel/2 — inl}|g)(gl/2. (13)

We are now in a position to define the QJ procedure. Let
at time ¢ the system be in the normalized state | (7)). If no
photon exchange occurs during the time interval A¢, it will
be in a state

O + Ay = [1 — iAtH/h]l (1)) (14)

at time ¢ + A¢, with norm 1 — A p. Hence the normalized

state |y (r+AnD)=|yO(t+ Ar))//T—Ap. Should a pho-
ton exchange (a QJ) occur during A¢, the normalized state

will be either |¢(r + Af)) = le) or |t + A1) = |g),
depending on whether the photon was absorbed or emitted
by the two-level system. The Monte Carlo procedure con-
sists of choosing a random number € between zero and one.

If e>Ap, no QJ occurs, and we take |¢(¢ + A7) =
Ot + AD)/{/T—Ap. If € <Ap, a photon is either
emitted with probability [b(t)*T/[la(®)’T; + |b(2)|°T)]
[state |¢(z + Ar)) = |g)] or absorbed with probability
la()PTy/[la(PTy + [b()PT)] [state [y (1 + An) = [e)].
It is easy to show (see the Supplemental Material [25]) that
this procedure is equivalent to the analysis of the usual
master equation for the partial density matrix, defined as
the average of | (£)){# ()| over the bath degrees of free-
dom [12,26]. Moreover, this procedure shows that the
environment not only induces QIJs, but also influences
the evolution of the system in between such jumps, where
the dynamics of the amplitudes a and b in the interaction
representation is governed by

iha = e \(t)b + ihAT|b()|*a(t)/2, (15)

ihb = ' \(t)a — ihAT|a(1)|?b(t)/2 (16)

Figure 2 is a numerical example of the evolution of the
excited state population [{e|(7))|?, obtained using the QJ
procedure. At times ¢ < 0 the system is not driven, and it
jumps between the two eigenstates |e) and |g) stochasti-
cally, governed by the rates I'} and I';, and the instanta-
neous populations. In the time interval 0 < wyt/27 <38,
the system is driven resonantly by the force A(f) = A.
Within this interval, it makes one QJ down |e) — |g) in
this particular realization. Finally, at times wt/27 = 8,
the drive is absent again, and the collapse (jump to |e)) tells
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FIG. 2 (color online). An example of a quantum jump simula-
tion. The environment temperature is Shwy = 1.0. The amplitude
of the harmonic drive (frequency w = wq) is Ay = 0.1hw, and
lasts 8 cycles. The relaxation rate is given by I'j = 0.1w,.
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that the system was measured to be in the ground state at
the end of the drive.

We next demonstrate that detecting the photons emitted
and absorbed by calorimetry of the environment serves as a
traditional projective measurement. Suppose that the sys-
tem’s wave function reads | (7)) = a(T)|g) + b(T)|e)
at the end of the driving period. The evolution of the
amplitudes at times t=7 is governed by Egs. (15) and
(16) with A =0, until the first “guardian” photon is
exchanged. During this quiet period, the excited state

population p,(f) = |b(¢)|> thus evolves as p, =
—AI'p, (1 — p,). Hence
pe(t) = (1 + reATu=T) =1, (17)

where r =[1 — p,(T)]/p.(T). We can then evaluate the
probability P that the system is found to be in the excited
state, indicated by the absorption of the guardian photon by
the environment (as opposed to being emitted by the envi-
ronment). Indeed,

. fT AT (e LrATH=p@) T (g

and integrating Eq. (18) after substitution of p,(f) from
Eq. (17) yields Py = p,(7T). This intuitive result holds
irrespective of the values of I'y and I'; i.e., it is valid at
any temperature of the environment and independent of the
strength and type of the coupling. This is in accordance with
the result of a projective measurement of the state of a
quantum system.

Based on the interpretation of traces as that in Fig. 2, we
obtain the work for a given realization as follows. We make
two measurements, in the spirit of the two-measurement
protocol that was formerly applied to an isolated driven
system [20,27]: one measurement before the driving pe-
riod, and another one after it. These measurements are
done by the detection of the last photon emitted to the
environment or absorbed by the system to the environment
before the drive and of the first photon after the drive. This
can be realized in practice calorimetrically as proposed in
Ref. [28]. In the example of Fig. 2, (i) the first measure-
ment indicates that the initial state of the system is |g)
(internal energy U; = E|), since the last photon before the
application of the force (at wyt/27 ~ —4) was emission by
the system, and (ii) the second measurement shows that the
final state of the system was likewise |g) (internal energy
is Uy = E,), since the first photon after the drive (at
wot/27 =~ 14) was absorption by the system. These two
measurements thus tell that the force has not changed the
system internal energy U, i.e., AU = U; — U; = 0O for this
particular realization. (The other possible outcomes would
have been AU = *hw,.) During the drive, heat is released
to or taken from the environment by the QJ events. Again,
in the example of Fig. 2, the one photon emitted by the
system corresponds to assigning heat Q = +hw released
to the environment. The work done by the source is then

W = AU + Q, and equals hw, for this realization. Our
ultimate task is then to find the distribution of W in
repeated experiments, and to assess the fluctuation rela-
tions and the various moments of W.

We proceed by presenting a systematic method to ana-
lyze the statistics of work and heat under the force protocol
A(¢) from the initial time O to the final time 7 . At time
t = 0, the system is supposed to be equilibrated by the heat
bath. As a result it will occupy the ground state with
probability p, = (1 + ¢ #"0)~! and the excited state
with probability p, = ¢~ #" p,.Therefore, to obtain aver-
ages involving W under many repetitions of the protocol
A(7), two cases should be distinguished. One corresponds
to the case where the protocol is run on the ground state,
the other to the case where the protocol is run on the
excited state. For both cases, the set of possible quantum
trajectories can be represented with the help of a Cayley
tree. The inset of Fig. 2 shows the Cayley tree correspond-
ing to all possible quantum trajectories starting from the
ground state and undergoing one QJ during the driving
period T . Specifically, the trajectory in red is the one
realized during the simulation shown in Fig. 2. The proba-
bility P for such a single photon trajectory starting in the
ground state is given by

T
P=pgrlﬁ) dtla, (T, 1)Pe=T0|b,(1,0)|2 70,
(19)

Here b,(t, 0) denotes the probability amplitude 4 at time ¢
with the ground state b(0) = 0 as the initial condition at
t = 0. Similarly, a (7, 7) denotes the probability ampli-
tude a at time 7 with the ground state a(f) = 1 as the
initial condition at time 7. Here a and b are found by
solving Egs. (15) and (16). The probability that no photon
is exchanged with the bath is given by the Poisson factor
e~ ™s, where we defined

5]
Tooltn 1) = f di[Tlag,(1,1)P + Tk, (6, 1)IP] (20)

The total probability P; for a one-photon process to occur
under the action of the drive is found by summing over all
trajectories for this tree and for the one corresponding to
the initial excited state.

The calculation of averages involving the quantity W is
now immediate. For example, along the trajectory analyzed
above we have W = hw,. This trajectory thus contributes to
(WKy as (hwg)*P/P, and to (¢ AW) as e P"opP/P,. The
other trajectories can be analyzed similarly; the extension to
Cayley trees corresponding to arbitrary n-photon processes
is straightforward. In Fig. 3 we show the results of calcu-
lations of the ratio of the two lowest moments of W as well
as of the quantity (¢ "#W). The points are obtained with QJ
simulations; the solid lines correspond to a perturbative
solution of Egs. (15) and (16) for weak dissipation
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FIG. 3 (color online). Results of numerical simulations and
analytic approximations. The ratio of the two lowest moments of
work and the JE average are shown as functions of the driving
amplitude. The symbols are numerical simulations and the lines
are analytical approximations; the colored ones are for the
perturbative in I'|; calculation. Here, Bhw, = 2.0, the resonant
(w = wy) drive lasts 10 cycles, and the various data sets are for
I’y = (0,)0.005, 0.01, 0.015, 0.02 from bottom to top.

(see the Supplemental Material [25]). In the linear response
limit Ay — 0, we find that the ratio (W?)/hwy(W)—
coth(Bhwy/2) =~ 1.31, the usual fluctuation-dissipation
result. As A is increased, deviations are found from linear
response that are more important for stronger dissipation;
perturbation theory breaks down at relatively low drive
amplitudes.

We now turn to the results for the quantity (¢ #%). The
simulations show that within the numerical accuracy this
quantity equals 1 for the parameter range studied here, in
agreement with the celebrated Jarzynski equality (JE)
(e7PW) =1 [21,29]. (Since the drive lasts over an integer
number of periods, the free-energy difference between the
initial and final points vanishes, and the right-hand side of
this equation is indeed expected to be equal to unity.)
Analyzing the Cayley tree trajectories systematically, one
can demonstrate the validity of the JE for the dissipative
driven two-level system studied here (see the Supplemental
Material [25]). The proof is based on the fact that the
quantity (¢~ #W) is equal to the (normalized) total proba-
bility for all the trajectories under the reverse protocol
Ar(t) = A(T — 1), provided the rates Iy, T}, as well as
the probabilities p, and p,, satisfy detailed balance. We
like to emphasize that on one hand this proof, based on
reversed trajectories, is analogous to the early one by
Crooks for a classical two-state system obeying detailed
balance for transition rates [30]. Yet the classical dynam-
ics, presenting definite alternating transitions between the
two states, differs from the quantum evolution involving
superposition states, leading to the branching of the trajec-
tories shown by the Cayley trees.
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FIG. 4 (color online). Numerically calculated work distribu-
tions under the influence of the 7 pulse. The system, initially in
thermal equilibrium, is driven at the resonance angular fre-
quency wy over 10 periods, with amplitude Ay = 0.05hw,.
The bath temperature is given by Bhw, = 1, and we employed
10° repetitions for each value of I',. Panel (a) presents an isolated
qubit, whereas panels (b)—(f) correspond to open systems with
increasing relaxation.

A two-level system driven sinusoidally over a time 7 =
7/ Ay at angular frequency w, undergoes a so-called
pulse, ending up into the excited state if it was initially in
the ground state, and vice versa. Figure 4 shows the corre-
sponding work distribution calculated for various rates of
relaxation. Initially the system is in thermal equilibrium.
Figure 4(a) shows the probability distribution function for
vanishing relaxation rate. In this case the work has two
possible values: —hw, with probability p,, and +#Aw, with
probability p,. Upon increasing the relaxation rate in
Figs. 4(b)—4(d) and 4(f), the probability distribution func-
tion evolves from the “bimodal” one into a more bell-
shaped distribution. For all values of relaxation, the JE is
satisfied within the numerical error; the values obtained by
10° repetitions in each case are indicated in the corre-
sponding panel.

A natural realization of the presented scheme is a super-
conducting phase qubit [31,32] coupled inductively to a
dissipative element, whose temperature can be monitored
in real time in order to perform a calorimetric measurement
[28]. Specifically, one may use a current-biased SQUID,
yielding a two-level system with a typical level spacing of
the order of hwy/kg ~ 1 K. The rates are given by I'j =
g2S(+wy) and I'; = g2S(— w,). The coupling g is propor-
tional to the mutual inductance between the SQUID loop
and the dissipative element; i.e., it is determined by the
geometry of the setup. The noise spectral function S(* w)
of the resistive element is taken at angular frequency * w,.
For thermal noise, detailed balance between the | , ] rates is
obeyed.
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In summary, we have analyzed work in a disipative two-
level quantum system using the quantum jump approach.
The common fluctuation theorem (JE) is shown to be valid,
and we obtain the moments of work distribution in linear
response and beyond. As an illustration, we apply the
method to a qubit driven by a 7 pulse and we demonstrate
that the model can be realized for instance as a super-
conducting phase qubit.
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