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A sufficiently damped iteration of the Kohn-Sham (KS) equations with the exact functional is proven to

always converge to the true ground-state density, regardless of the initial density or the strength of electron

correlation, for finite Coulomb systems.We numerically implement the exact functional for one-dimensional

continuum systems and demonstrate convergence of the damped KS algorithm. More strongly correlated

systems converge more slowly.
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Kohn-Sham density functional theory (KS-DFT) [1]
is a widely applied electronic structure method. Standard
approximate functionals yield accurate ground-state energies
and electron densities for many systems of interest [2], but
often failwhen electrons are strongly correlated.Ground-state
properties can be qualitatively incorrect [3], and convergence
can be very slow [4,5]. To remedy this, several popular
schemes augment Kohn-Sham theory, such as LDAþ U
[6]. Others seek to improve approximate functionals [7]
within the original formulation. But what if the exact func-
tional does not exist for strongly correlated systems? Even
if it does, what if the method fails to converge? Either plight
would render KS-DFT useless for strongly correlated sys-
tems, and render fruitless the vast efforts currently underway
to treat, e.g., oxide materials [8], with KS-DFT.

The Kohn-Sham (KS) approach employs a fictitious
system of noninteracting electrons, defined to have the
same density as the interacting system of interest. The
potential characterizing this KS system is unique if it exists
[9]. Because the KS potential is a functional of the density,
in practice one must search for the density and KS potential
together using an iterative, self-consistent scheme [10].
The converged density is in principle the ground-state
density of the original, interacting system, whose ground-
state energy is a functional of this density.

Motivated by concerns of convergence and existence,
we have been performing KS calculations with the exact
functional for one-dimensional (1D) continuum systems
[11,12]. Even when correlations are strong, we never find
a density whose KS potential does not exist, consistent
with the results of Ref. [13]. Nor do we find any system
where the KS scheme does not converge, although con-
vergence can slow by orders of magnitude as correlation is
increased, just as in approximate calculations [4,5].

Exact statements about the unknown density functional
inform the construction of all successful density functional
theory (DFT) approximations [14–17]. More importantly,
they distinguish between what a KS-DFT calculation can
possibly do, and what it cannot. Themost notorious example
is the demonstration that theKS band gap of a semiconductor

does not equal the true charge gap, even when the exact
functional is used [11,18]. Our key result is an analytic proof
that a simple algorithm guarantees convergence of the
KS equations for all systems, weakly or strongly correlated,
independent of the starting point. Thus multiple stationary
points and failures to converge are artifacts of approximate
functionals. Studies of convergence are well known in
applied mathematics, but almost all concern simple approx-
imations, such as LDA [19], Hartree-Fock [20], etc., and not
those in current use in many calculations.
The basic idea lies in a single step of the KS scheme,

which proceeds from an input density to produce an output
density. For a strongly correlated system as in Fig. 1(a),
the output density can differ strongly from the input
density, and be further from the true ground-state density.
Nevertheless, by proving that the initial slope is always
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FIG. 1 (color online). (a) The input and output densities for a
single step of the Kohn-Sham scheme, as well as the exact
density, of a one-dimensional, strongly correlated four atom,
four electron system. (b) The energy of the system which
interpolates between the input and output densities Ev½n��,
measured from the ground-state energy E

gs
v . Also shown is the

linear-response approximation with slope given by Eq. (12).
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negative as in Fig. 1(b), we show there is always a linear
combination of the input and output densities that lowers
the energy. By sufficiently damping each KS step, the
energy is always reduced each iteration, yielding the
ground-state density and energy to within a given tolerance
in a finite number of iterations.

The KS algorithm is designed to minimize the energy as
a functional of the electron density nðrÞ. For an N-electron
system with a reasonable [21] external potential vðrÞ, the
energy functional is [1]

Ev½n� ¼ TS½n� þ
Z

d3rnðrÞvðrÞ þ EHXC½n�; (1)

where TS½n� is the kinetic energy of noninteracting (NI)
electrons having density nðrÞ, and EHXC½n� is the Hartree-
exchange-correlation (HXC) energy [22,23]. The KS equa-
tions are, in atomic units,

� 1

2
r2�jðrÞþ ðvðrÞþvHXC½n�ðrÞÞ�jðrÞ ¼ �j�jðrÞ; (2)

where vHXC½n�ðrÞ ¼ �EHXC½n�=�nðrÞ is the HXC poten-
tial, �jðrÞ are the electron orbitals, and �j are their eigen-

values. (In this work, we consider spin-unpolarized systems
for simplicity.) An output density n0ðrÞ is found by doubly
occupying the lowest-energy orbitals

n0ðrÞ ¼ 2
X1
j¼1

fjj�jðrÞj2; (3)

where 0 � fj � 1 and
P

jfj ¼ N=2. Fractional occupation

is only allowed for the highest occupied orbitals if they are
degenerate, where fj is chosen to minimize the difference

between nðrÞ and n0ðrÞ [24].
Consider convergence of the following simple algo-

rithm. Given an input density nðrÞ, solve the KS equations
to obtain the output density n0ðrÞ. Define

� � 1

N2

Z
d3rðn0ðrÞ � nðrÞÞ2: (4)

Choose some small � > 0, and if �< �, then the calcu-
lation has converged. Otherwise, the next input is

n�ðrÞ ¼ ð1� �ÞnðrÞ þ �n0ðrÞ; (5)

for some �2ð0;1�, and repeat. An ensemble-v-representable
nðrÞ is the ground-state density (or an ensemble mixture of
degenerate ground-state densities) for some local potential
v½n�ðrÞ [26,27]. For NI electrons, this potential is vS½n�ðrÞ.
We call nðrÞ physical when both potentials exist, and we
require all n�ðrÞ to be physical. We refer to a single iteration
of Eqs. (2)–(5) as one step of the KS algorithm. Taking
full steps with � ¼ 1 does not usually lead to a fixed point.
But taking damped steps with � < 1 ensures the algorithm
converges, as we now prove.

Lemma.—Consider two finite [28] systems of N elec-
trons, with ground-state densities nðrÞ, n0ðrÞ, and potentials
v½n�ðrÞ � v½n0�ðrÞ, by which we mean the potentials differ
by more than a constant. Then [9]

Z
d3rðv½n0�ðrÞ � v½n�ðrÞÞðn0ðrÞ � nðrÞÞ< 0: (6)

Proof.—Following Ref. [9], we apply the variational
principle. Since nðrÞ is the ground-state density of the
potential v½n�ðrÞ, we have Ev½n�½n�< Ev½n�½n0�, orZ

d3rv½n�ðrÞðnðrÞ � n0ðrÞÞ<F½n0� � F½n�; (7)

where F½n� � TS½n� þ EHXC½n�. It is also true that
Ev½n0�½n0�< Ev½n0�½n�, so we may switch primes with

unprimes in Eq. (7). Adding the resulting equation to the
original yields Eq. (6). j
Note that the lemma is true for any interaction between

electrons, including none.
Theorem.—Given an arbitrary physical density nðrÞ as

input into the KS algorithm,

E0
v½n� � dEv½n��

d�

���������¼0
� 0; (8)

where n�ðrÞ is defined as in Eq. (5). If equality holds, then
nðrÞ is a stationary point of Ev½n�.
Proof.—Consider �Ev resulting from ��nðrÞ �

�ðn0ðrÞ � nðrÞÞ ¼ n�ðrÞ � nðrÞ. Then

E0
v½n� ¼

Z
d3r

�Ev½n�
�nðrÞ �nðrÞ: (9)

For a physical density, the functional derivative is [27]

�Ev½n�
�nðrÞ ¼ �vS½n�ðrÞ þ vðrÞ þ vHXC½n�ðrÞ: (10)

Since vðrÞ þ vHXC½n�ðrÞ defines vS½n0�ðrÞ [n0ðrÞ is the
output density of Eq. (2)], we have

�Ev½n�
�nðrÞ ¼ vS½n0�ðrÞ � vS½n�ðrÞ: (11)

Combining Eqs. (11) and (9) gives

E0
v½n� ¼

Z
d3rðvS½n0�ðrÞ � vS½n�ðrÞÞðn0ðrÞ � nðrÞÞ: (12)

Two cases arise: if vS½n0�ðrÞ � vS½n�ðrÞ, use the lemma
applied to NI systems: then E0

v½n� must be less than zero.
Otherwise, vS½n0�ðrÞ ¼ vS½n�ðrÞ, so both E0

v½n� and the
rhs of Eq. (11) are zero, and nðrÞ is a stationary point
of Ev½n�. j
We illustrate the theorem in Fig. 1(b), where we plot

Ev½n�� and its linear-response approximation for the input
density of Fig. 1(a).
Corollary 1.—The KS algorithm described above is

guaranteed to converge to a stationary point of the func-
tional, if (1) only physical densities are encountered,
(2) the energy functional is convex, and (3) appropriate
values for � are used, e.g., from the algorithm of Ref. [29],
because it is effectively a gradient-descent algorithm [30].
Corollary 2.—When using the exact functional, the KS

algorithm using appropriate �’s converges to the exact
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ground-state density, as long as the first input density is a
physical density. This is because we can choose each
subsequent input density as a physical density [31], and
the exact ensemble functional [22,33] is convex. The only
stationary point of the exact functional, when considering
physical densities, is the ground-state density [34].

Numerical implementation.—To find the KS energy
functional exactly when there is no degeneracy, we must
find the many-electron wave function�½n� that minimizes

h�jT̂ þ V̂eej�i (the kinetic and electron-electron repul-
sion energies) with density nðrÞ [22,35]. To perform this
very demanding [36] interacting inversion, start with a
guess for the potential ~vðrÞ. Then solve the many-body

system for the ground-state wave function ~� and density
~nðrÞ. Using a quasi-Newton method [37], modify ~vðrÞ and
repeat, minimizing the difference between ~nðrÞ and the
target density nðrÞ. Once converged, the procedure is
repeated for NI electrons. The HXC energy is then

EHXC½n� ¼ h�½n�jT̂ þ V̂eej�½n�i � TS½n�; (13)

and the HXC potential is

vHXC½n�ðrÞ ¼ vS½n�ðrÞ � v½n�ðrÞ: (14)

We implement these functionals for 1D continuum systems
[11,12], obtaining highly accurate many-body solutions
with the density matrix renormalization group [38,39].
These are the first such inversions for systems with more
than two electrons [40,41]. Because, in one dimension,
degeneracy (beyond spin) does not occur, we find pure
states �½n�. More generally, one should invert using an
ensemble �½n� and take a trace in Eq. (13) [22,33].

To illustrate convergence of the damped KS algorithm
using the exact functional, we plot the output densities
and KS potentials for a four-electron, four-atom system
in Fig. 2. We choose the interatomic spacing R ¼ 3 to be

roughly twice the equilibrium spacing of H2 (when the
interaction between nuclei is the same as that between
electrons), making this a moderately correlated system.
Taking � ¼ 0:30, the algorithm converges to the exact
density (computed separately using DMRG) to �< 10�6

using Eq. (4), within 13 steps.
Consider the KS scheme applied to a simple 1D H2

molecule with bond length R [12]. Initialize the algorithm
with an asymmetric input density, aH� density centered on
the left atom. Of course, no sensible KS calculation starts
with such a density, but we do this to amplify convergence
issues. In Fig. 3, we quantify the convergence of the KS
algorithm using � from Eq. (4) as well as energy differ-
ences from the ground state. For the equilibrium bond
length (R ¼ 1:6), � may be chosen quite large (� 0:5),
but as the atoms are stretched to R ¼ 3, � must be & 0:2.
When R ¼ 5, even � ¼ 0:01 is too large to converge the
calculation (not shown). Thus, as the bond is stretched and
the system develops strong static correlation [12], conver-
gence becomes increasingly difficult. As more atoms are
added to the chain (not shown), such as stretched H4, even
a reasonable initial state converges very slowly.
Consequences for real calculations.—For approximate

XC functionals, the corresponding Ev½n� is not, in general,
convex for every vðrÞ, and our corollaries do not hold.
Consider H2 in the local spin-density approximation.
At and near equilibrium bond lengths, only one stationary
solution exists. The approximate functional may or may
not be convex. But when the bond is stretched beyond the
infamous Coulson-Fischer point [42,43], an unrestricted
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FIG. 2 (color online). KS procedure for a moderately corre-
lated four-electron system (four hydrogen atoms with R ¼ 3),
showing the first few iterations. Using a fixed � ¼ 0:30, we
converge to �< 10�6 using Eq. (4) within 13 iterations.
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solution of lower energy appears [12], as in Fig. 4, so the
corresponding Ev½n� is not convex and convergence with
our simple algorithm is not guaranteed. While the re-
stricted solution is a saddle point, the unrestricted solution
is a local minimum. Thus, only the unrestricted solution
behaves locally like the solution with the exact functional,
providing further rationale [43] for preferring such a solu-
tion over any restricted one. On the other hand, slowing
of convergence as correlations become stronger is a real
effect, and not an artifact of approximations.

We chose our simple algorithm to prove convergence,
but many are more sophisticated and efficient (see, e.g.,
Refs. [4,5]). Mixing KS potentials instead of densities [44]
can similarly be proven to converge, with the advantage
that all densities encountered are NI v representable.

Finally, we expect that orbital degeneracies in three
dimensions require the ensemble treatment [22,25,26,33].
Further, extending the KS approach to use fractional occu-
pation of electron orbitals (even in the case of nondege-
neracy) may speed convergence [45] and allow KS-DFT to
more naturally handle strong static correlation [46].
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