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An ab initio calculation of the 12C elastic form factor and sum rules of longitudinal and transverse

response functions measured in inclusive (e, e0) scattering are reported, based on realistic nuclear

potentials and electromagnetic currents. The longitudinal elastic form factor and sum rule are found to

be in satisfactory agreement with available experimental data. A direct comparison between theory and

experiment is difficult for the transverse sum rule. However, it is shown that the calculated transverse sum

rule has large contributions from two-body currents, indicating that these mechanisms lead to a significant

enhancement of the quasielastic transverse response. This fact may have implications for the anomaly

observed in recent neutrino quasielastic charge-changing scattering experiments on 12C.
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The current picture of the nucleus as a system of protons
and neutrons interacting among themselves via two- and
three-body forces and with external electroweak probes via
one- and two-body currents—a dynamical framework we
will refer to below as the standard nuclear physics
approach (SNPA)—has been shown to reproduce satisfac-
torily a variety of empirical properties of light nuclei with
mass number A � 12, including energy spectra [1–7];
static properties [1,3,4,8,9] of low-lying states, such as
charge radii and magnetic and quadrupole moments; and
longitudinal electron scattering [10,11]. However, it has
yet to be established conclusively whether such a picture
quantitatively and successfully accounts for the observed
electroweak structure and response of these systems, at
least those with A > 4, in a wide range of energy and
momentum transfers.

Recent neutrino quasielastic charge-changing scattering
data on 12C [12] show an excess, at relatively low energy,
of measured cross section relative to theoretical calcula-
tions. However, those calculations use rather crude models
of nuclear structure—Fermi gas [12,13] or local density
approximations [14] of the nuclear matter spectral
function—as well as simplistic treatments of the reaction
mechanism, and hence do not include the potentially
important two-nucleon effects that would be present in
the standard approach.

We report an exact quantum Monte Carlo (QMC) cal-
culation of the elastic form factor and sum rules associated
with the longitudinal and transverse response functions
measured in inclusive electron scattering experiments on
12C. In addition to providing the first step toward a com-
prehensive study, within the SNPA, of the quasielastic

electroweak response functions of light nuclei, the com-
parison of these results with the data provides an important
verification of the SNPA.
The sum rules are defined as [15]

S�ðqÞ ¼ C�

Z 1

!þ
th

d!
R�ðq;!Þ
Gp2

E ðQ2Þ ; (1)

where R�ðq;!Þ is the longitudinal (� ¼ L) or transverse
(� ¼ T) response function, q and ! are the momentum
and energy transfers,!th is the energy transfer correspond-
ing to the inelastic threshold (the first excited-state energy
is at 4.44 MeV relative to the ground state in 12C), Gp

EðQ2Þ
is the proton electric form factor evaluated at four-
momentum transfer Q2 ¼ q2 �!2, and the C�’s are
appropriate normalization factors, given by

CL ¼ 1

Z
; CT ¼ 2

ðZ�2
p þ N�2

nÞ
m2

q2
: (2)

Here, m is the nucleon mass, and Z (N) and �p (�n) are

the proton (neutron) number and magnetic moment,
respectively. These factors have been introduced so that
S�ðq ! 1Þ ’ 1 under the approximation that the nuclear
charge and current operators originate solely from the
charge and spin magnetization of individual protons and
neutrons and that relativistic corrections to these one-body
operators—such as the Darwin-Foldy and spin-orbit terms
in the charge operator—are ignored.
It is well known [16] that the sum rules above can be

expressed as ground-state expectation values of the type

S�ðqÞ ¼ C�½h0jOy
�ðqÞO�ðqÞj0i � jh0;qjO�ðqÞj0ij2�; (3)
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where O�ðqÞ is either the charge �ðqÞ (� ¼ L) or trans-
verse current j?ðqÞ (� ¼ T) operator divided by Gp

EðQ2Þ,
j0;qi denotes the ground state of the nucleus recoiling with
total momentum q, and averages over the spin projections
have been suppressed because 12C has J� ¼ 0þ. The S�ðqÞ
as defined in Eq. (1) only includes the inelastic contribu-
tion to R�ðq;!Þ; i.e., the elastic contribution represented
by the second term on the right-hand side of Eq. (3) has
been removed. It is proportional to the longitudinal (FL) or
transverse (FT) elastic form factors. For 12C, FT vanishes,
while FLðqÞ (to be discussed below) is given by FLðqÞ ¼
Gp

EðQ2
elÞh0;qjOLðqÞj0i=Z, with the four-momentum trans-

fer Q2
el ¼ q2 �!2

el and !el corresponding to elastic scat-

tering !el ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

A

q
�mA (mA is the 12C mass).

The sum rules S�ðqÞ provide a useful tool for studying
integral properties of the response of the nucleus to an
external electromagnetic probe, and their calculation does
not require any knowledge of the complicated structure of
the nuclear excitation spectrum. Unfortunately, direct com-
parison between the calculated and experimentally
extracted sum rules cannot be made unambiguously for
two reasons. First, the experimental determination of S�
requires measuring the associated R� in the whole energy-
transfer region, from threshold up to 1. Inclusive electron
scattering experiments only allow access to the spacelike
region of the four-momentum transfer (!< q). While the
response in the timelike region (!> q) could, in principle,
be measured via eþe� annihilation, no such experiments
have been carried out to date. Therefore, for a meaningful
comparison between theory and experiment, one needs to
estimate the strength outside the region covered by the
experiment. We will return to this issue below. For the
moment, it suffices to say that in the past, this has been
accomplished in the case of SLðqÞ either by extrapolating
the data [17] or, in the few-nucleon systems, by parame-
trizing the high-energy tail and using energy-weighted sum
rules to constrain it [18,19].

The second reason that direct comparison of theoretical
and ‘‘experimental’’ sum rules is difficult lies in the inher-
ent inadequacy of the current SNPA to account for explicit
pion production mechanisms. The latter mostly affect the
transverse response and make its�-peak region outside the
range of applicability of this approach. However, the one-
and two-body charge and current operators adopted in the
present work should provide a realistic and quantitative
description of both longitudinal and transverse response in
the quasielastic region, where nucleon and (virtual) pion
degrees of freedom are expected to be dominant. At low
and intermediate momentum transfers (q & 400 MeV=c),
the quasielastic and � peak are well separated, and it is
therefore reasonable to study sum rules of the transverse
response.

The ground-state wave function of 12C is obtained
from a Green’s function Monte Carlo (GFMC) solution
of the Schrödinger equation including the Argonne v18

(AV18) two-nucleon (NN) [20] and Illinois-7 (IL7)
three-nucleon (NNN) [2] potentials. The AV18 consists
of a long-range component induced by one-pion exchange
and intermediate-to-short-range components modeled phe-
nomenologically and fits the NN scattering database for
energies up to Elab ¼ 350 MeV with a �2 per datum close
to one. The IL7 includes a central (albeit isospin depen-
dent) short-range repulsive term and two-and three-pion-
exchange mechanisms involving excitation of intermediate
� resonances. Its strength is determined by four parameters
which are fixed by a best fit to the energies of 17 low-lying
states of nuclei in the mass range A � 10, obtained in
combination with the AV18 NN potential. As already
noted, the AV18þ IL7 Hamiltonian reproduces well the
spectra of nuclei with A � 10 [2]—in particular, the attrac-
tion provided by the Illinois NNN potentials in isospin 3=2
triplets is crucial for the p-shell nuclei—and the p-wave
resonances with J� ¼ ð3=2Þ� and ð1=2Þ� in low-energy
neutron scattering off 4He [21].
The 12C ground-state wave function is evolved in imagi-

nary time by GFMC calculations from a variational
Monte Carlo (VMC) wave function that contains both
explicit alpha clustering and the five possible J� ¼ 0þ
p-shell states [1,22]. These are multiplied by two- and
three-body noncentral correlations [22]. Our ground-state
energy and rms charge radius are �93:3ð4ÞMeV and
2.46(2) fm, respectively, in good agreement with the experi-
mental values of�92:16 MeV and ð2:471�0:005Þ fm [23].
Realistic models for the electromagnetic charge and

current operators include one- and two-body terms (see
Ref. [24] for a recent overview). The former follow from a
nonrelativistic expansion of the single-nucleon four-
current, in which corrections proportional to 1=m2 are
retained. Leading two-body terms are derived from the
static part of the NN potential (the AV18 in the present
case), which is assumed to be due to exchanges of effective
pseudoscalar (�-like) and vector (�-like) mesons. The
corresponding charge and current operators are constructed
from nonrelativistic reductions of Feynman amplitudes
with the �-like and �-like effective propagators projected
out of the central, spin-spin, and tensor components of the
NN potential. They contain no free parameters, and their
short-range behavior is consistent with that of the potential.
In particular, the longitudinal part of these two-body
currents satisfies, by construction, current conservation
with the (static part of the) NN potential. Additional
contributions—purely transverse and hence unconstrained
by current conservation—come from the M1 excitation of
� resonances treated perturbatively in the intermediate
state (for the current) and from the ��� transition mecha-
nism (for the charge and current). For these, the values of
the various coupling constants are taken from experiment
[24]. As documented in Refs. [15,25,26], these charge and
current operators reproduce quite well a variety of few-
nucleon electromagnetic observables, ranging from elastic
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form factors to low-energy radiative capture cross sections
to the quasielastic response in inclusive (e, e0) scattering at
intermediate energies.

The spin-orbit and convection terms inOLðqÞ andOTðqÞ
require gradients of both the bra and ket in Eq. (3); how-
ever, we cannot compute gradients of the evolved GFMC
wave function. Therefore we compute these terms for only
the VMC wave function and add them perturbatively to the
GFMC results. They are generally quite small, although the
convection term is significant for small q; see Fig. 3 below.

The calculations were made on Argonne’s IBM
Blue Gene/Q (Mira). Our GFMC program uses the
Asynchronous Dynamic Load Balancing (ADLB) library
[27] to achieve parallelization to more than 250 000
Message Passing Interface (MPI) processes with 80% ef-
ficiency to calculate the energy. The calculations of opera-
tors presented here require much more memory than just
the energy evaluation, and we typically used four MPI
processes on each 16 Gbyte node. We achieve good
OpenMP scaling in each process: using 16 threads (the
most possible) instead of only 4 reduces the time per
configuration per q value from about 12 to 6 min. For
each Monte Carlo configuration, we averaged over 12
directions of q̂ in Eq. (3); these were in four groups of
three orthogonal directions obtained by implementing the
method of uniformly distributed random rotations on a unit
sphere [28]. The 12 calculations for each of 21 magnitudes
of q (252 independent calculations) were distributed to
different MPI processes by ADLB, with an efficiency
above 95% on more than 32 000 MPI processes.

The calculated longitudinal elastic form factor (FL) of
12C is compared to experimental data in Fig. 1. These data
are from an unpublished compilation by Sick [23,29] and
are well reproduced by theory over the whole range of
momentum transfers. The results labeled one body (1b)
include, in addition to the proton, the neutron contribution
as well as the Darwin-Foldy and spin-orbit relativistic
corrections to the single-nucleon charge operator, while
those labeled two body (2b) also contain the contributions
due to the �-like, �-like, and ��� (two-body) charge
operators. These two-body contributions are negligible at
low q and become appreciable only for q > 3 fm�1, where
they interfere destructively with the one-body contribu-
tions, bringing theory into closer agreement with experi-
ment. The Simon [30], Galster [31], and Höhler [32]
parametrizations are used for the proton electric, neutron
electric, and proton and neutron magnetic form factors,
respectively.
In Figs. 2 and 3, we show by the open squares the

experimental sum rules SLðqÞ and STðqÞ obtained by inte-
grating up to!max the longitudinal and transverse response
functions (divided by the square of Gp

E) extracted from
world data on inclusive (e, e0) scattering off 12C [17]. For
q ¼ 1:53, 1.94, and 2:90 fm�1, !max in the longitudinal
(transverse) case corresponds to, respectively, 140, 210,
and 345 (140, 180, 285) MeV. We also show by the solid
squares the experimental sum rules obtained by estimating
the contribution of strength in the region !>!max. This
estimate �S�ðqÞ is made by assuming that for !>!max,
i.e., well beyond the quasielastic peak, the (longitudinal or
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FIG. 1 (color online). The longitudinal elastic form factor of
12C obtained from the AV18þ IL7 Hamiltonian with one-body
only (empty circles) and one- plus two-body (solid circles) terms
in the charge operator is compared to experimental data (solid
squares). Also displayed are the statistical errors of the QMC
calculation. The inset shows the calculated charge density in
coordinate space with one-body (empty circles) and
(oneþ two)-body (red band) terms compared with an analysis
of the experimental data (solid line) [36].

0 1 2 3 4

q (fm-1)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

S
L
 (

q)

exp+tail
exp
ρ

1b
ρ

1b+2b

FIG. 2 (color online). The longitudinal sum rule of 12C ob-
tained from the AV18þ IL7 Hamiltonian with one-body only
(empty circles, dashed line) and one- plus two-body (solid
circles, solid line) terms in the charge operator is compared to
experimental data without (empty squares), labeled exp, and
with (solid squares), labeled expþtail, the tail contribution;
see the text. Also displayed are the statistical errors of the
QMC calculation.
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transverse) response in a nucleus like 12C (RA
�) is propor-

tional to that in the deuteron (Rd
�), which can be exactly

calculated [24]. In particular, Rd
� has been calculated using

AV18, but very similar results are obtained by using
next-to-next-to-next-to-leading order [33] instead. Thus,
we set RA

�ðq;! >!maxÞ ¼ �ðqÞRd
�ðq;!Þ and determine

�ðqÞ by matching the experimental 12C response to the
calculated deuteron one. In practice, �S�ðqÞ follows from

�S�ðqÞ ¼ �ðqÞCA
�

�
Sd�ðqÞ
Cd
�

�
Z !max

!þ
th

Rd
�ðq;!Þ

Gp2
E ðQ2Þ

�
; (4)

where the CA
� and Cd

� are the normalization factors
associated with the nucleus and deuteron, respectively,
and Sd�ðqÞ is the deuteron sum rule. It is worthwhile
emphasizing that, for the transverse case, this estimate is
particularly uncertain for the reasons explained earlier.
In particular, the data on RT at q ¼ 1:94 and 2:90 fm� 1
[17] suggest that at !�!max, there might be already
significant strength that has leaked in from the �-peak
region.

The scaling assumption above assumes that the high-
energy part of the response is dominated by two-nucleon
physics and that the most important contribution is
from deuteronlike np pairs. The high-energy response
can be obtained from the Fourier transform of the

short-time response ð2�ÞS�ðq;!Þ ¼ R
dth0jOy

�ðqÞ�
expð�iHtÞO�ðqÞj0i, or equivalently from the small imagi-
nary time dependence of the propagator. At short times,
the full propagator is governed by the product of pair
propagators (assuming three-nucleon interactions are
weak), and hence we expect the scaling with deuteronlike
pairs.

The sum rules computed with the AV18þ IL7
Hamiltonian and one-body only or one- and two-body
terms in the charge (SL) and current (ST) operators are
shown, respectively, by the dashed and solid lines in
Figs. 2 and 3. In the small q limit, SLðqÞ vanishes quadrati-
cally, while the divergent behavior in STðqÞ is due to the
1=q2 present in the normalization factor CT . In this limit,
OTðq ¼ 0Þ ¼ i½H;

P
iriPi� [25,26], where H is the

Hamiltonian and Pi is the proton projector, and therefore
STðqÞ=CT is finite; indeed, the associated strength is due to
collective excitations of electric-dipole type in the nucleus.
In the large q limit, the one-body sum rules differ from
one because of relativistic corrections in OLðqÞ, primarily
the Darwin-Foldy term which gives a contribution
��=ð1þ �Þ to S1bL ðqÞ, where � ’ q2=ð4m2Þ, and because
of the convection term inOTðqÞ, which gives a contribution
’ ð4=3ÞCTTp=m to S1bT ðqÞ, where Tp is the proton kinetic

energy in the nucleus.
The calculated SLðqÞ is in satisfactory agreement with

the experimental values, including tail contributions, and
no significant quenching of longitudinal strength is
observed. This is achieved by dividing the experimental
RLðq;!Þ by the (square of the) free proton electric form
factor. In contrast to SL, the transverse sum rule has
large two-body contributions—at q ¼ 2:5 fm�1 these
increase S1bT by about 50%. Studies of Euclidean transverse
response functions in the few-nucleon systems within the
same SNPA adopted here [15] suggest that a significant
portion of this excess transverse strength is in the quasi-
elastic region. Clearly, a direct QMC calculation of
the 12C response functions is needed to resolve this issue
conclusively. It will also be interesting to see the extent to
which these considerations—in particular, the major
role played by two-body currents—will remain valid in
the weak sector probed in neutrino scattering, and
possibly provide an explanation for the observed 12C
anomaly mentioned in the introduction. There are indica-
tions from random phase approximation calculations
including 2p-2h states that this may indeed be the
case [34,35].
We thank D. Day, J. Jourdan, and, particularly, I. Sick

for providing us with the data on the elastic form factor
and inclusive response functions of 12C, and for correspon-
dence in reference to various aspects of the analysis of
these data. We also thank S. Pastore and R. B. Wiringa
for advice in the early phases of this work. The calculations
were performed with a grant of Early-Science time on
Mira, Argonne’s IBM Blue Gene/Q, and also used resour-
ces provided by Los Alamos Open Supercomputing and by
the National Energy Research Scientific Computing Center
(NERSC). This research is supported by the U.S.
Department of Energy, Office of Nuclear Physics, under
Contracts No. DE-AC02-06CH11357 (A. L. and S. C. P.),
No. DE-AC02-05CH11231 (S. G. and J. C.), and No. DE-
AC05-06OR23177 (R. S.), by the NUCLEI SciDAC
Program, and by the LANL LDRD Program.
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