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The radiative decay of J=c into a pure gauge tensor glueball is studied in the quenched lattice QCD

formalism. With two anisotropic lattices, the multipole amplitudes E1ð0Þ,M2ð0Þ, and E3ð0Þ are obtained to
be 0.114(12)(6) GeV, �0:011ð5Þð1Þ GeV, and 0.023(8)(1) GeV, respectively. The first error comes from

the statistics, the Q2 interpolation, and the continuum extrapolation, while the second is due to the

uncertainty of the scale parameter r�1
0 ¼ 410ð20Þ MeV. Thus, the partial decay width �ðJ=c ! �G2þþÞ

is estimated to be 1.01(22)(10) keV, which corresponds to a large branch ratio 1:1ð2Þð1Þ � 10�2.

The phenomenological implication of this result is also discussed.
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Glueballs are exotic hadron states made up of gluons.
Their existence is permitted by QCD but has not yet been
finally confirmed by experiment. In contrast to the scalar
glueball, whose possible candidate can be f0ð1370Þ,
f0ð1500Þ, or f0ð1710Þ, the experimental evidence for the
tensor glueball is more obscure. Quenched lattice QCD
studies predict the tensor glueball mass to be in the range
2.2–2.4 GeV [1–3], which is also supported by a recent
2þ 1 flavor full-QCD lattice simulation [4]. In this mass
region, Mark III [5] and BES [6] have observed a narrow
tensor meson �ð2230Þ (now as fJð2220Þ in PDG [7]) in the
J=c radiative decays with a large production rate, whose
features favor the interpretation of a tensor glueball.
However, it was not seen in the inclusive � spectrum [8]
by the Crystal Ball Collaboration and in p �p annihila-
tions to pseudoscalar pairs [9–16]. So, the existence of
�ð2230Þ [fJð2220Þ] needs confirmation by new experi-
ments, especially by the BESIII experiment with the
largest J=c sample.

It is well known that the production of glueballs is
favored in J=c decays because of the gluon-rich environ-
ment. The radiative decay is of special importance, owing
to its cleaner background. So, the production rate of the
tensor glueball in the decay can be an important criterion
for its identification. The decay has been studied only in
a few theoretical works [17–20]. In these works, the
tree-level perturbative QCD approach is employed.
Under certain assumptions, the helicity amplitudes of the
decay are related to the coupling of the two gluons to the
tensor glueball. This coupling has been determined with
the quenched lattice QCD [3,21]. Based on results of

Refs. [17–19], the branch ratio is estimated as 2� 10�3

[22], but the theoretical uncertainties are not under control.
In fact, the decay can be investigated directly from the

numerical lattice QCD studies [23,24], which provide first
principles calculations from the QCD Lagrangian, espe-
cially in quenched lattice QCD. Quenched lattice QCD can
be taken as a theory which only consists of heavy quarks
and gluons. In this theory, amplitudes of the decay do not
have an absorptive part because of masses of states. Hence,
the amplitudes can be directly calculated in the theory in
Euclidean space. It should be noted that it is still a chal-
lenging task for the full-QCD lattice study of the decay
because glueballs can be mixed with states of light quark
pairs. Nevertheless, the study of the decay in quenched
QCD will give important information about nonperturba-
tive properties of glueballs.
At the lowest order of QED, the amplitude for the

radiative decay J=c ! �G2þþ is given by

Mr;r�;rG ¼ ���ð ~q; r�ÞhGð ~pf; rGÞjj�ð0ÞjJ=c ð ~pi; rÞi; (1)

where ~q ¼ ~pi � ~pf is the momentum of the real photon,

and r, r�, and rG are the quantum numbers of the

polarizations of J=c , the photon, and the tensor glueball,
respectively. ��ð ~q; r�Þ is the polarization vector of the

photon, and j� is the electromagnetic current operator.
The hadronic matrix element appearing in the above
equation can be obtained directly from a lattice QCD
calculation of corresponding three-point functions. On
the other hand, these matrix elements can be expressed
(in Minkowski space-time) in terms of multipole form
factors as follows:
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hGð ~pf; rGÞjj�ð0ÞjJ=c ð ~pi; rÞi
¼ �

�
1 E1ðQ2Þ þ �

�
2 M2ðQ2Þ þ �

�
3 E3ðQ2Þ

þ ��
4 C1ðQ2Þ þ ��

5 C2ðQ2Þ; (2)

where ��
i are Lorentz-covariant kinematic functions of pi

and pf (and specific polarizations of the states), whose

explicit expressions can be derived exactly [25,26], and
E1ðQ2Þ,M2ðQ2Þ, E3ðQ2Þ, C1ðQ2Þ, and C2ðQ2Þ are the form
factors which depend only on Q2 ¼ �ðpi � pfÞ2. Since
C1ðQ2Þ and C2ðQ2Þ vanish at Q2 ¼ 0, we focus on the
extraction of the first three which are involved in the
calculation of the decay width �ðJ=c ! �G2þþÞ as

� ¼ 4�j ~p�j
27M2

J=c

½jE1ð0Þj2 þ jM2ð0Þj2 þ jE3ð0Þj2�; (3)

where � is the fine structure constant, and ~p� is the photon

momentum with j ~p�j ¼ ðM2
J=c �M2

GÞ=ð2MJ=c Þ.
We use the tadpole-improved gauge action [1] to gen-

erate gauge configurations on anisotropic lattices with the
aspect ratio � ¼ as=at ¼ 5, where as and at are the spatial
and temporal lattice spacings, respectively. Two lattices
L3 � T ¼ 83 � 96ð� ¼ 2:4Þ and 123 � 144ð� ¼ 2:8Þ are
applied to check the effect of the finite lattice spacings. The
relevant input parameters are listed in Table I, where as
values are determined from r�1

0 ¼ 410ð20Þ MeV. Since
glueball relevant study needs quite a large statistics, the
spatial extensions of both lattices are properly chosen to be
�1:7 fm according to the study of the finite volume effect
of Ref. [3], which is a compromise of the computational
resource requirement and negligible finite volume effects
both for glueballs [3] and charmonia. In the practice,
we generated 5000 configurations for each lattice. The
charm quark propagators are calculated using the
tadpole-improved clover action for anisotropic lattices
[27,28] with the bare charm quark masses set by the
physical mass of J=c ,MJ=c ¼ 3:097 GeV, through which

the spectrum of the 1S and 1P charmonia are well repro-
duced [25]. In practice, disconnected diagrams due to the
charm and quark-antiquark annihilation are expected to be
unimportant according to the Okubo-Zweig-Iizuka rule
and therefore are neglected in the calculation of relevant
two-point and three-point functions.

The calculations in this Letter are performed in the rest
frame of the tensor glueball. One of the key issues in our
calculation is to construct optimal interpolating field

operators which couple dominantly to the pure gauge
tensor glueball. This is realized by applying completely
the same scheme as that in the calculations of the glueball
spectrum [2,3]. On the cubic lattice, a tensor (J ¼ 2) state
corresponds to the E and T2 irreducible representations of
the lattice symmetry group O. So, we build the E and T2

operators from a set of prototype Wilson loops. By using
different gauge-link smearing techniques, an operator set

f�ðiÞ
� ; � ¼ 1; 2; . . . ; 24g of 24 different gluonic operators

is constructed for each component of the Tþþ
2 and

Eþþ representations, where the superscript i labels the
three components of T2 and two components of E.

Finally, for each component, an optimal operator�ðiÞðtÞ ¼P
v��

ðiÞ
� ðtÞ for the ground state tensor glueball is obtained

with the combinational coefficients v� determined by
solving the generalized eigenvalue problem

~CðiÞðtDÞvðRÞ ¼ e�tD ~mðtDÞ ~CðiÞð0ÞvðRÞ; (4)

at tD ¼ 1, where ~CðiÞðtÞ is the correlation matrix of the
operator set

~C��ðtÞ ¼ 1

Nt

X
�

h0j�ðiÞ
� ðtþ �Þ�ðiÞ

� ð�Þj0i: (5)

In addition, the glueball two-point functions are
normalized as

CiðtÞ ¼ 1

T

X
�

h�ðiÞðtþ �Þ�ðiÞyð�Þi

� jh0j�ðiÞð0ÞjTiij2
2MTV3

e�MTt � e�MTt; (6)

where jTii refers to ith component of the Tþþ
2 and Eþþ

glueball states. We are assured that CiðtÞ can be well
described by a single exponential CðtÞ ¼ We�MTt, with W
usually deviating from one by a few percents. It should be
noted that the SOð3Þ rotational symmetry is broken on the
lattice with a finite lattice spacing, and consequently the
masses of T2 and E glueballs are not necessarily the same,
even though they converge to the same tensor glueball mass
in the continuum limit when the rotational invariance is
restored. However, with the two lattice spacings we used
in this Letter, we observe that the difference of the two
masses is not distinguishable within errors, which implies
that the effects of the rotational symmetry breaking are not
important. So, in the following, we neglect this symmetry
breaking and assume that the five components of the T2 and
E and that of the corresponding spin-two state can be
connected by a normal transformation.
We calculate the three-point functions in the rest frame

of the tensor glueball with J=c moving with a definite
momentum ~pf ¼ 2	~n=Las, where ~n ranges from (0, 0, 0)

to (2, 2, 2). In order to increase the statistics additionally,
for each configuration, we calculate T charm quark propa-

gators SFð ~x; t; ~0; �Þ by setting a point source on each time

TABLE I. The input parameters for the calculation. Values for
the coupling �, anisotropy �, the lattice size, and the number of
measurements are listed. as=r0 is determined by the static
potential, and as is estimated by r�1

0 ¼ 410ð20Þ MeV.

� � as=r0 as (fm) Las (fm) L3 � T Nconf

2.4 5 0.461(4) 0.222(2)(11) �1:78 83 � 96 5000

2.8 5 0.288(2) 0.138(1)(7) �1:66 123 � 144 5000
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slice �, which permits us to average over the temporal
direction when calculating the three-point functions

�ð3Þ
i;�;jð ~q; tf; tÞ ¼

1

T

XT�1

�¼0

X
~y

e�i ~q� ~yh�ðiÞðtf þ �Þ

� J�ð ~y; tþ �ÞOV;jð~0; �Þi

¼ X
T;V;r

e�MT ðtf�tÞe�EV ð ~qÞt

2MTV32EVð ~qÞ
� h0j�ðiÞð0ÞjTiihTijJ�ð0ÞjVð ~q; rÞi
� hVð ~q; rÞjOy

V;jð0Þj0i; (7)

where J�ðxÞ ¼ �cðxÞ��cðxÞ is the vector current operator,

OV;j ¼ �c�jc is the conventional interpolation field for J=c ,

and the summation in the last equality is over all the possible
states with different polarizations. In the rest frame of the
tensor glueball, the momentum of the initial J=c is the same
as that of the current operator, say, ~pV ¼ ~q. The vector
current J�ðxÞ, which is conserved in the continuum limit,

is no longer conserved on the lattice and requires a multi-
plicative renormalization. The renormalization constant of
spatial components of the vector current is determined to be

ZðsÞ
V ¼ 1:39ð2Þ for � ¼ 2:4 and ZðsÞ

V ¼ 1:11ð1Þ for � ¼ 2:8
[23] using a nonperturbative scheme [24].

The matrix elements hTijJ�ð0ÞjVð ~q; rÞi can be extracted

from the above three-point functions along with the
two-point function of the glueball CiðtÞ and that of J=c

�ð2Þ
j ð ~q; tÞ,

�ð2Þ
j ð ~q; tÞ ¼ X

~x

e�i ~q� ~xh0jOV;jð ~x; tÞOy
V;jð~0; 0Þj0i; (8)

which provide the information of MT , EVð ~qÞ, and the
other two matrix elements. According to Eq. (6), one has
approximately

h0j�ðiÞð0ÞjTii �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MTV3

p
: (9)

MT and EVð ~qÞ can be determined precisely from the
two-point functions. Figure 1 shows the nice effective
energy plateaus of J=c for typical momentum modes
at � ¼ 2:4. We also check the dispersion relation of J=c
and find the largest deviation of squared speed of light
c2 from one is less than 4%. The matrix elements

hVð ~q; rÞjOy
V;jð0Þj0i are included implicitly in the three-

point and two-point functions and can be canceled out
by taking a ratio Ri;�;jð ~q; tÞ for some specific fi; �; jg
combinations

Ri;�;jð ~q; tÞ ¼ �ð3Þ
i;�;jð ~q; tf; tÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4V3MTEVð ~qÞ

p

Ciðtf � tÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð2Þ
j ð ~q; tf � tÞ

�ð2Þ
j ð ~q; tÞ�ð2Þ

j ð ~q; tfÞ

vuuut ; (10)

which is expected to suppress the contamination from
excited states of vector charmonia and should be insensi-
tive to the variation of t in a time window. As such, the
desired matrix elements can be derived by the fit form

Ri;�;jð ~q; tÞ ¼
X
r

hTijJ�ð0ÞjVð ~q; rÞi�jð ~q; rÞ þ 
fðtÞ; (11)

where ~�ð ~q; rÞ is the polarization vector of J=c and

fðtÞ ¼ ae�mt accounts for the residual contamination
from excited states.
In the data analysis, the 5000 configurations are divided

into 100 bins and the average of 50 measurements in each
bin is taken as an independent measurement. For the
resultant 100 measurements, the one-eliminating jackknife
method is used to perform the fit for the matrix elements
(MT and EV determined from two-point functions are used
as known parameters). Generally speaking, the time sepa-
rations t and tf � t should be kept large for the saturation

of the ground state, but we have to fix tf � t ¼ 1 because

of the rapid damping of the glueball signal with respect to
the noise. Fortunately, this is justified to some extent by the
optimal glueball operators, which couple almost exclu-
sively to the ground state. The second step of the data
analysis is to extract the form factors E1ðQ2Þ, M2ðQ2Þ,
and E3ðQ2Þ at different Q2 ¼ 2EVð ~qÞMT �M2

V �M2
T

according to Eq. (2). Since the matrix elements are mea-
sured from the same configuration ensemble, we carry out
a correlated data fitting to get these three form factors
simultaneously with a covariance matrix constructed
from the jackknife ensemble described above. The sym-
metric combinations of the indices fi; �; jg and the mo-
mentum ~q which gives the same Q2 are averaged to
increase the statistics. In order to get the form factor at
Q2 ¼ 0, we carry out a correlated polynomial fit to the
three form factors from Q2 ¼ �0:5 to 2:7 GeV2,

 0.8
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FIG. 1 (color online). The effective energy plot for J=c with
different spatial momenta. From top to bottom are the plateaus
for momentum modes ~p ¼ 2	~n=L, with ~n ¼ ð2; 2; 2Þ, (2, 2, 1),
(2, 2, 0) (2, 1, 1) (2, 1, 0) (2, 0, 0) (1, 1, 1) (1, 1, 0) (1, 0, 0),
and (0, 0, 0).
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FiðQ2Þ ¼ Fið0Þ þ aiQ
2 þ biQ

4; (12)

where Fi refers to E1,M2, or E3. Figure 2 shows the results
of FiðQ2Þ for � ¼ 2:4 (upper panel) and � ¼ 2:8 (lower
panel), where the data points are the calculated values with
jackknife errors, and the curves are the polynomial fits with
jackknife error bands. The corresponding interpolated
Fið0Þ’s are listed in Table II. Note that the renormalization

constant ZðsÞ
V of the spatial components of the vector cur-

rent is applied to the final numerical values. We also fit the
form factors by functions either linear in Q2 in the range
�0:5 GeV2 <Q2 < 1:0 GeV2, or by adding a Q6 term to
Eq. (12) in the range �0:5 GeV2 <Q2 < 2:7 GeV2. The
resultant Fið0Þ’s are consistent with that of Eq. (12) within
errors.

The last step is the continuum extrapolation using the
two lattice systems. After performing a linear extrapolation
in a2s , the continuum limits of the three form factors
are determined to be E1ð0Þ ¼ 0:114ð12Þ GeV, M2ð0Þ ¼
�0:011ð5Þ GeV, and E3ð0Þ ¼ 0:023ð8Þ GeV, respectively.
Considering the uncertainty of the scale parameter

r�1
0 ¼ 410ð20Þ MeV, which also introduces 5% error, the

final result of the form factors is

E1ð0Þ ¼ 0:114ð12Þð6Þ GeV
M2ð0Þ ¼ �0:011ð5Þð1Þ GeV
E3ð0Þ ¼ 0:023ð8Þð1Þ GeV:

(13)

Note that there is a pattern jE1ð0Þj � jM2ð0Þj � jE3ð0Þj;
hence, the decay width is dominated by the value of E1ð0Þ.
For the continuum value of the tensor glueball mass, we get
MG ¼ 2:37ð3Þð12Þ GeV (the second error is due to the
uncertainty of r0), which is compatible with that in
Ref. [3]. Thus, according to Eq. (3), we finally get the
decay width �ðJ=c ! �G2þþÞ ¼ 1:01ð22Þð10Þ keV. With
the total width of J=c , �tot ¼ 92:9ð2:8Þ keV [7], the cor-
responding branching ratio is

�ðJ=c ! �G2þþÞ=�tot ¼ 1:1ð2Þð1Þ � 10�2: (14)

The determined branching ratio is rather large. We admit
that the calculation is carried out in the quenched approxi-
mation, whose systematical uncertainty cannot be esti-
mated easily without unquenched calculations. A recent
full-QCD lattice study of the mass spectrum of glueballs in
Ref. [4] indicates that there is no substantial correction of
the masses of the scalar and tensor glueball. Based on this
fact, if the form factors also show similar behavior as the
masses, the unquenching effects might not change our
result drastically. Of course, a full-QCD lattice calculation
would be very much welcome.
In experiments, the narrow state fJð2220Þ observed by

Mark III and BES in the J=c decay was once interpreted as
a candidate for the tensor glueball. But, the analysis of the
processes p �p ! 		ðK �KÞ yields no indication of the nar-
row fJð2220Þ and sets an upper bound for the branch ratios
BrðfJ ! p �pÞBrðfJ ! 		;K �KÞ (see the review article
Ref. [29] and the references therein). Combining this
with the results of Mark III and BES, a lower bound
for the branching ratio is obtained to be Br½J=c !
�fJð2220Þ�> 2:5� 10�3 [7], which seems compatible
with our result. However, BESII with substantially more
statistics does not find the evidence of a narrow structure
around 2.2 GeV of the 		 invariant mass spectrum in the
processes J=c ! �		 [30], and BABAR does not observe
it in J=c ! �ðKþK�; KSKSÞ [31]. Recently, based on 225
million J=c events, the BESIII Collaboration performs a
partial wave analysis of J=c ! ��� and also finds no
evident narrow peak for fJð2220Þ in the ��mass spectrum
[32]. So, the existence of fJð2220Þ is still very weak.
Another possibility also exists that the tensor glueball is
a broad resonance and readily decays to light hadrons. Our
result motivates a serious joint analysis of the radiative
J=c decay into tensor objects in VV, PP, p �p, and 4	 final
states (where V and P stand for vector and pseudoscalar
mesons, respectively), among which VV channels may be
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FIG. 2 (color online). The extracted form factors E1ðQ2Þ,
M2ðQ2Þ, and E3ðQ2Þ in the physical units. The upper panel
is for � ¼ 2:4 and the lower one for � ¼ 2:8. The curves
with error bands show the polynomial fit with FiðQ2Þ ¼ Fið0Þ þ
aiQ

2 þ biQ
4.

TABLE II. The tensor glueball masses MT as well as the form
factors E1ð0Þ,M2ð0Þ, and E3ð0Þ for the two lattices with � ¼ 2:4
and 2.8. The last row gives the continuum extrapolation. The
uncertainty of the scale parameter r0 has not been incorporated
yet.

� MT (GeV) E1 (GeV) M2 (GeV) E3 (GeV)

2.4 2.360(20) 0.142(07) �0:012ð2Þ 0.012(2)

2.8 2.367(25) 0.125(10) �0:011ð4Þ 0.019(6)

1 2.372(28) 0.114(12) �0:011ð5Þ 0.023(8)
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of special importance since they are kinematically favored
in the decay of a tensor meson.

To summarize, we have carried out the first lattice study
on the E1, M2, and E3 multipole amplitudes for J=c
radiatively decaying into the pure gauge tensor glueball
G2þþ in the quenched approximation. With two different
lattice spacings, the amplitudes are extrapolated to their
continuum limits. The partial decay width and branch ratio
for J=c ! �G2þþ are predicted to be 1.01(22)(10) keV
and 1:1ð2Þð1Þ � 10�2, respectively, which imply that the
tensor glueball can be copiously produced in the J=c
radiative decays if it does exist. To date, the existence of
fJð2220Þ needs confirmation and a broad tensor glueball is
also possible. Hopefully, the BESIII data will be able to
clarify the situation.
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