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Neutrino-neutrino refraction causes self-induced flavor conversion in dense neutrino fluxes. For the first
time, we include the azimuth angle of neutrino propagation as an explicit variable and find a new generic
multi-azimuth-angle instability which, for simple spectra, occurs in the normal neutrino mass hierarchy.
Matter suppression of this instability in supernovae requires larger densities than the traditional bimodal
case. The new instability shows explicitly that solutions of the equations for collective flavor oscillations
need not inherit the symmetries of initial or boundary conditions. This change of paradigm requires

reconsideration of numerous results in this field.
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Introduction.—Flavor oscillations depend strongly on
matter because the weak-interaction potential \/EGFne
can far exceed the oscillation energy w = Am?/2E [1,2].
A matter gradient can cause complete flavor conversion
[Mikheev-Smirnov-Wolfenstein (MSW) effect], notably
for neutrinos streaming from a supernova (SN) core [3-5].
In addition, the large neutrino flux itself causes strong
neutrino-neutrino refraction [6] and can lead to self-
induced flavor conversion [7-10]. This effect is very differ-
ent from MSW conversion because the flavor content of
the overall ensemble remains fixed. Instead, flavor is
exchanged between different momentum modes and can
lead to interesting spectral features [9-15]. Self-induced
flavor conversion can become large because of self-
amplification within the interacting neutrino system, which
in turn requires instabilities (collective run-away solutions)
in flavor space [16-19].

Our main point is that run-away solutions need not
inherit the symmetries of initial or boundary conditions.
For self-induced flavor conversion in SNe, global spherical
symmetry was always assumed and, therefore, axial sym-
metry in every direction. However, our linearized stability
analysis shows that local axial symmetry can be broken
by a multi-azimuth-angle (MAA) instability. For simple
spectra it arises in the normal hierarchy (NH) of neutrino
masses, whereas the traditional bimodal instability
[8,20,21] occurs in the inverted hierarchy (IH).

Core-collapse SNe show large convective overturns, the
standing accretion shock instability, or simply rotation.
However, our new effect is not caused by the concomitant
asymmetries of neutrino emission, but by the intrinsic
flavor instability of an axially symmetric neutrino flux,
an effect which does not strongly depend on the exact
azimuth distribution of emission.

In the early universe, one can integrate out the factor
1 — v - v/ from the current-current neutrino interaction and
then finds the bimodal instability [20]. However, for equal
neutrino and anti-neutrino densities it was found that
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allowing angle modes to evolve independently enables
run-away solutions in both hierarchies [22]. In this early
study it was not recognized that such multi-angle instabil-
ities are far more general.

Two-flavor neutrino-neutrino refraction can be written
in the form of the spin-pairing Hamiltonian that appears in
many areas of physics [23]. When all flavor spins interact
with each other with the same strength, this Hamiltonian
has as many invariants as variables and thus is integrable,
explaining the N-mode coherent solutions [23-26]. After
including the factor 1 — v-V/, these simple properties
are probably lost. It would be interesting to study this
multiangle spin-pairing Hamiltonian to develop a deeper
mathematical understanding of our system.

Our more modest goal here is to prove explicitly the
existence of the MAA instability in the simplest SN setting
and how it is affected by matter, allowing for a first under-
standing of the MAA effect.

Equations of motion.—We describe neutrinos by 3 X 3
flavor matrices o(z, r, E, v), where the diagonal elements
are occupation numbers for v,, v,, and v, while the off
diagonal elements encode correlations caused by flavor
oscillations. We use negative E to denote ¥ in which case
© includes a minus sign: the diagonal elements are negative
v occupation numbers. (One needs 6 X 6 matrices to
include »—7 correlations that could arise from novel
lepton-number violating interactions [27,28] or from
Majorana spin-flavor oscillations [29,30].)

In the absence of collisions, neutrino propagation is
described by the Liouville equation [31,32]

(9, +v-Vye=—iH el (D

where ¢ and H are functions of ¢, r, E, and v. (Except for o,
we use capital sans-serif letters to denote matrices in flavor
space.) The Hamiltonian matrix is

M? +oo av’
=_—+ - ' "1 —v-v
H="> \/EGF[Nf [_m dE ,[(277)39 (1—v v)],
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where M? is the matrix of mass-squares, causing vacuum
oscillations. The matrix of charged-lepton densities, N,
includes the background matter effect. The dv’ integral is
over the unit sphere and @’ depends on ¢, r, E’, and V.

In general, this is an untractable 7-dimensional problem.
As a simplification we assume stationarity and drop the
time dependence. We also assume spherically symmetric
emission, but no longer enforce local axial symmetry of the
solution. We still assume that variations in the transverse
direction are small so that @ depends only on r, E, and v.
In other words, we study neutrino propagation only in the
neighborhood of a chosen location and do not worry about
the global solution.

We consider neutrinos that stream freely after emission
at some fiducial inner boundary R (‘‘neutrino sphere”). If
we describe neutrinos by their local v, the zenith range of
occupied modes depends on radius. To avoid this effect we
use instead the emission angle J% to label the modes. The
variable u = sin>d is even more convenient because
blackbody-like isotropic emission at R corresponds to a
uniform distribution on 0 =< u =< 1. The radial velocity
of a mode u at radius r is v,, = (1 — uR?/r*)"/? and the
transverse velocity is 8,, = u'/?R/r.

To study quantities that evolve only as a consequence of
flavor oscillations, we introduce flux matrices [33] by

F(r, E, u, ¢) dEdude _
. -

d’p
Qm)?’

o(r,p) (2)

41 v(u, r)
where ¢ is the azimuth angle of v. The Liouville equation
finally becomes d,F = —i[H, F], the vacuum and matter
terms receive a factor v~ !, and the v—v part is

—_ ! __ . R/
HW=J§GFde'F'1 woB B

v’

where [dI" = [T2dE' [}du' [37de'. In addition, we
find B+ B' = Vuu'(R*/r*) cos(¢ — ¢'). Enforcing axial
symmetry would remove the B - B term, and this is what
was done in the previous literature.

Two flavors.—Henceforth, we consider only two flavors
e and x = p or 7 and describe energy modes by w =
Am?/2E. We write the 2 X 2 flux matrices in the form

R _ FR S
F=TLF+7F6 F"( ’ ) 4)
2 2 S* =5

where FR (o, u, ¢) are the flavor fluxes at the inner
boundary radius R. All other quantities depend on r, w,
u, and ¢. The flux summed over all flavors, TrF, is
conserved and can be ignored in commutators. The v,
survival probability, (1 + s), is given in terms of what
we call the swap factor —1 = s = 1. The off diagonal
element S is complex and s> + |§|> = 1.

We introduce the dimensionless spectrum g(w, u, ¢),
representing FX — FR_ It is negative for antineutrinos

where w <0, and normalized to the » flux, i.e.,
[’ wdo [ldu [("deg(w, u, ¢) = —1. The v-v asym-
metry is € = [dl'g where [dl' = [*2dw [idu [3"de.

Refractive effects are provided by the r-dependent
parameters [17]

R2
A= \/EGF[”e(”) - né(”)]ﬁ,
V3GHIF, (R) — F, (R)] R* )
o= 47rr? 272"

In analogy to g, we normalize the effective v—v interaction
energy u to the »,—v, flux difference at R. The factor
R?/2r? highlights that only the multiangle impact of
refraction is relevant [17].

So finally the stability analysis uses the spectrum
g(w, u, @), the effective v—v interaction energy u « r—4,
and the total matter effect parametrized by A = A + epu.
For Am? > 0, our equations correspond to IH, whereas NH
can be implemented with Am?* — —Am? or equivalently
via @ — — o in the vacuum term of H.

Linearized stability analysis.—At high density, neutri-
nos are produced in flavor eigenstates and propagate as
such until the initially small off diagonal elements of F
grow large. This can happen by an MSW resonance, which
in SNe typically occurs at much larger distances than self-
induced conversions. In the latter case, which we study
here, the sudden growth is caused by an exponential run-
away solution. We assume that no such instability occurs
out to r 3> R, so we use the large-distance approximation
where the transverse neutrino velocity is small. To linear
order in S, we have s = 1 and find

i9,S = (w + ud)S

- ,ufdl”[u + ' — 23uu’ cos(p — o) ]g'S. (6)

We write solutions as S(r, , u, ¢) = Qq(w, u, ¢)e ¥

with complex eigenfrequency () = y + ik and eigenvec-
tor Qq(w, u, ¢), which satisfy the eigenvalue equation

(a) + MX - Q)QQ
=u [dF’[u +u — ZWCOS(QD - oNg'0h. (D

The rhs has the form a + bu + /u(c cosg + d sing) with
complex numbers a, b, ¢, and d, so the eigenvectors are

_a+bu+ Ju(ccosp + dsing)

Qo ®+uk—Q

)

After inserting Eq. (8) into (7), self-consistency requires
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©)
where

Y = / dudwde 8L #)
g Janaede T — Q

Nontrivial solutions exist if the determinant of the matrix
vanishes. The mass hierarchy IH — NH is changed by
® — —w in the denominator of Eq. (10).

Axial symmetry of neutrino emission.—As a next
step, we simplify to g(w, u, ¢) — g(w, u)/27. Now only
the ¢ integrals with sin?¢ and cos’¢ survive and yield

IF=r= %I 1, leaving us with

cose(sing). (10)

I —1 I, 0 0 a
I I —1 0 0 b 0
0 0 —(I, + 1) 0 c ’
0 0 0 —(I, +1) d
(1)
This system has nontrivial solutions if
(I, —1)?>=1I1, or I,=—1, (12)

where the integral expressions are the same as in the
previous azimuthally symmetric case [17].

The first equation corresponds to nontrivial solutions
for a and b and yields the instabilities found in previous
works. In IH this is the well-known bimodal solution,
present even for the single-angle case of only 1 zenith
mode. In NH the bimodal solution does not exist and
multiangle effects are necessary for any run-away solution.
For a nontrivial distribution of zenith angles, the first
equation leads to a solution [17] which we now denote
the multizenith angle (MZA) instability.

The second equation allows for nonzero ¢ and d,
providing solutions with nontrivial ¢ dependence, unstable
only in NH. The previous solutions remain unaffected by
MAA, whereas in NH new solutions appear.

These cases become more explicit if we ignore matter
(A = 0) and assume the spectrum factorizes as g(w, u) —
g(w)h(u). With I = u [dwg(w)/(w — Q), Eq. (12) is

(uy + (u®)'/?  for j = bimodal,

() — (W2 for j = MZA, (13)
—(u) for j = MAA.

Note that g, is positive in the first case, and negative in the

second and third. In IH, the first case is the only one
providing an instability (bimodal) and exists for any u

Iﬁl :qj:

distribution. In NH, the first case is always stable, while
the second case yields the MZA solution. It does not exist
for single angle where (1) = (u2)/2. The third case exists
for any u distribution. For simple (single-crossed) spectra,
it provides the new MAA solution only in NH.

We illustrate these findings with a simple example
and consider single neutrino energy (w = *wy), i.e., the

spectrum  g(w) = —8(w + wy) + (1 + €)6(w — wy).

Equation (13) is now equivalent to the quadratic equation
w2 — 02

‘ = ng; = w (14)

2(1)0 + 6((1)0 + Q)
where j = bimodal, MZA or MAA. The solutions are

1
Q;= 5(—6//,]» + \/(Zwo —ep)? — 8w0,u,j). (15)

Exponentially growing solutions (k = Im{) > 0) can only
exist when wqu; > 0. Inverted hierarchy corresponds to
wy >0 and only the first case has g; > 0, providing the
bimodal instability. Normal hierarchy corresponds to
wo <0 so that the second and third cases provide the
MZA and MAA instabilities.

The system is unstable for w; between the limits
200/(v/1 + € = 1)?. The maximum growth rate obtains
for w; =2wo(2 + €)/€® and is Kpyu = 2lwglv/1 + €/€.
Therefore, a typical growth rate is a few times the vacuum
oscillation  frequency. For €=1/2 we find
Kimax = 2V6lwo| = 4.90|wy.

Azimuth distribution.—According to the expression for
the eigenfunction Q, in Eq. (8), the off diagonal elements
of the @ matrices develop an exponentially growing
“dipole term” ccos(¢) + dsin(¢), which represents an
ellipse in the complex plane. Its orientation and ellipticity
is chosen by some initial disturbance. If neutrino emission
is not axially symmetric, it provides a macroscopic seed,
but otherwise the situation is largely the same.

In this sense, our main point is that the linearized system
supports run-away solutions where the exponentially grow-
ing off diagonal @ elements depend on ¢ even if the
diagonal elements, represented by g(w, u, ¢), do not
depend on ¢ because of axially symmetric emission.

If we represent the ¢ dependence by N discrete angles
¢; with i=1,...,N, the corresponding distributions
8(¢ — ¢;) can be expanded in terms of functions
cos(ne) and sin(n¢). One can then show that the linearity
of the eigenfunctions Qg in cos(¢) and sin(¢) implies that
no new instabilities arise in the discretized system. No
spurious instabilities appear, in contrast to discrete zenith
angles [19], where the eigenfunctions depend on u in
nonlinear ways.

Impact of matter—If there is only one zenith angle,
matter has no impact on k because Au in the resonance
denominator simply shifts the real part of (). In general, Au
is different for every zenith angle trajectory, along which
neutrinos acquire different matter-induced phases. If A is
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FIG. 1 (color online). Growth rate « for blackbody-like zenith
distribution, single energy *w,, and € = 1/2. Black line: All
cases for A=A+ eu =0 (no matter effect). Other lines:
Indicated unstable cases for A = 300|wy].

large, the unstable region shifts to larger w-values [17]
as shown in Fig. 1 for all three cases. We have used
blackbody-like zenith distribution (uniform on O0=u=<1)
where  Gpimoqal = 1/2 + 1/3/3 = 1.077,  qyza=1/2—
1/v/3=-=0.077 and gyaa = —1/2. On the horizontal
axis in Fig. 1, we use u; as a variable, so the physical p
range is very different for the 3 cases.

Numerically it appears that for large A, the instability
occurs for aju ~ A, where a ; is a coefficient different for
each case. It also appears that for the bimodal and MZA
cases, actually a; ~ |g;| and we roughly have A ~ |u;l.
Note that A = eu + A ~ |gyzal e = 0.077 ., so that, for
reasonable values of €, the matter density A would have to
be negative—the MZA instability is self-suppressed by the
unavoidable effect of neutrinos themselves, and plays no
role in a realistic SN situation. On the other hand, we find
the new MAA instability the least sensitive to matter
effects, as the instability region shifts only for much larger
interaction strength (apas ~ 6lgmanl)-

Schematic SN example.—During the SN accretion
phase, the matter effect can be so large as to suppress
collective flavor conversions [18,33,34]. In Fig. 2 we
juxtapose the instability regions for the IH bimodal and
the new NH MAA instabilities for a simplified SN model.
We use single energy and blackbody-like emission at the
neutrino sphere, ignoring the halo flux [35]. We choose
physical parameters R, w(R), and € that mimic the more
realistic 15M, accretion-phase model used in our previous
study [18,35]. We show the region where «r>1, ie.,
where the growth rate is deemed ‘‘dangerous.” We also
show A(r), where the shock wave is seen at 70 km.

The matter profile never intersects the bimodal instabil-
ity region; i.e., this instability is suppressed everywhere in
this specific SN example. On the other hand, A(r) intersects
the MAA instability region just outside the shock wave.
This simplified case illustrates that the MAA instability
can arise in SN models where the bimodal instability is
suppressed. It also shows that the ‘“‘danger spots™ are in
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FIG. 2 (color online). Region where «xr > 1 for IH (blue) and
NH (red), depending on radius r and multiangle matter potential
A for our simplified SN model. Thick black line: SN density
profile. Thin dashed lines: Contours of constant electron density,
where Y, is the electron abundance per baryon. (The IH case
corresponds to Fig. 4 of Ref. [18], except for the simplified
spectrum used here.)

very different places, although it remains to be seen if this
finding is generic.

Conclusions.—All previous studies of self-induced
neutrino conversion in SNe or the early universe were based
on the false premise that solutions of the equations of motion
would inherit the symmetries of the initial or boundary
conditions. We have shown that azimuth-angle instabilities
are a generic phenomenon of collective neutrino oscillations.
Every single case in the previous literature with enforced
axial symmetry may have missed the dominant effect.

We have linearized the equations of motion around the
initial state of neutrinos in flavor eigenstates. The system
then shows either the bimodal or the MAA instability, but
not both. (For more complicated spectra that would lead to
multiple spectral splits [14], the bimodal instability occurs
for positive spectral crossings, the MAA instability for
negative ones.) However, evolved bimodal solutions,
where the off diagonal @ entries are not small, may still
become ¢-unstable, and the other way round.

Both instabilities can be suppressed by matter, but the
required density is larger for MAA. Therefore, it is not
necessarily clear if collective flavor conversions are ge-
nerically suppressed during the SN accretion phase, an
important question for possible neutrino mass hierarchy
determination [5]. For those cases where suppression is not
effective, dedicated numerical studies are needed.
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More fundamentally, one also needs to question the
validity of other common symmetry assumptions. For
example, we have assumed a stationary solution inherited
from stationary neutrino emission. Doubts may be moti-
vated, in particular, by the role of the small backward flux
caused by residual neutrino scattering that causes signifi-
cant refraction [35,36]. Even without worrying about the
backward flux, it has never been proven that a stationary
boundary condition implies a stationary solution for a
dense interacting neutrino stream. In the early universe,
homogeneous initial conditions need not guarantee homo-
geneous solutions. It remains to be seen if the interacting
neutrino system can spontaneously break translation sym-
metry in space or time.
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ported by the Deutsche Forschungsgemeinschaft under
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Training Network “Invisibles”). D.S. acknowledges
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Note added in proof.—Motivated by the preprint version
of our paper, a numerical study has appeared that confirms
the existence and importance of the MAA instability [37].
Moreover, two of us have devised a simple toy example of
two counter-propagating beams that shows a flavor insta-
bility in both neutrino mass hierarchies and explains the
physical nature of the MAA instability [38].
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