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We study the structure of topological phases and their boundaries in the projected entangled-pair states

(PEPS) formalism. We show how topological order in a system can be identified from the structure of the

PEPS transfer operator and subsequently use these findings to analyze the structure of the boundary

Hamiltonian, acting on the bond variables, which reflects the entanglement properties of the system. We

find that in a topological phase, the boundary Hamiltonian consists of two parts: A universal nonlocal part

which encodes the nature of the topological phase and a nonuniversal part which is local and inherits the

symmetries of the topological model, which helps to infer the structure of the boundary Hamiltonian and

thus possibly of the physical edge modes.
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The study of strongly correlated quantum systems is of
central interest in modern condensed matter physics due to
the exciting properties exhibited by those systems, in par-
ticular, unconventional phases with topological order. In
order to identify topological order in such systems, topo-
logical entropies [1,2] have been applied successfully.
To obtain more information than contained in the entropy,
the entanglement spectrum (ES)—i.e., the spectrum of the
reduced density operator of a region—has been studied,
and it has been realized that for certain systems, the low-
energy part of the ES resembles the spectrum of the
thermal state of a one-dimensional (1D) local boundary
Hamiltonian which can be associated with the boundary of
the region studied and which seems to be related to the
physical edge modes of the model [3–6]. While this rela-
tion between bulk ES, boundary Hamiltonian, and edge
excitations can be made rigorous in some cases [7,8], in
most cases, the Hamiltonian is a posteriori inferred from
the structure of the ES, and a general connection between
ES and boundary still needs to be made.

In Ref. [9], we made progress in that direction by
proving a rigorous connection between ES and boundary
using the framework of projected entangled-pair states
(PEPS) [10], which form the appropriate description of
ground states of gapped local Hamiltonians both in con-
ventional and topological phases [11]. This allowed us to
derive a one-dimensional boundary Hamiltonian, which
we found to be local in trivial phases (without symmetry
breaking or topological order). Following the Li-Haldane
conjecture about the relation of boundary Hamiltonian
and edge physics [3], this allows for conclusions about
the structure of a system’s edge excitations. On the other
hand, for both symmetry-broken and topological phases,

we found a highly nonlocal boundary Hamiltonian, making
it impossible to infer something about the actual edge
physics. Yet, since this boundary Hamiltonian acts on the
virtual bond variables, its local and nonlocal characters are
not necessarily reflected in physical space.
In this Letter, we establish a framework for studying the

boundary Hamiltonian of topologically ordered phases in
the framework of PEPS. We start by showing how topo-
logical order is reflected in the properties of the transfer
operator, which in turn enables us to decompose the bound-
ary Hamiltonian of topological models into two parts. The
universal part couples to nonlocal (topological) degrees of
freedom and determines the phase of the system but is
independent on microscopic details. The nonuniversal part
is local (thereby generalizing what happens for trivial
phases), depends on microscopic details, but vanishes
under renormalization group (RG) flows; moreover, it
commutes with the symmetries which originate from the
universal part. Therefore, the nonuniversal part can help to
infer the nature of the edge physics of the model.
Let us first introduce PEPS and explain how to use them

to derive boundary theories. For clarity, we restrict to
square lattices on a cylinder (with length Nh and circum-
ference Nv). A (translational invariant) PEPS jc i ¼P

ci1;...;iN ji1; . . . ; iNi is described by a five-index tensor

Ai
���� [Fig. 1(a), with i the physical and �, �, �, � the

virtual indices], such that the coefficient ci1;...;iN is obtained

by arranging tensors Ai1 ; . . . ; AiN on the cylinder and con-
tracting each virtual index with the corresponding index of
the adjacent tensors, while putting boundary conditions
j�Li and j�Ri at the open virtual indices at the two ends
[Fig. 1(c)]. PEPS naturally appear as ground states of local
parent Hamiltonians [12,13]; the boundary conditions j�i
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can be incorporated in the Hamiltonian by making the
virtual indices at the boundary physical and including
them in the parent Hamiltonian, and additionally acting
with a frustration-free Hamiltonian term with ground space
j�i on them. (In particular, if j�i is a matrix product state,
this Hamiltonian is local.)

As proven in Ref. [9] (see also appendix A in the
Supplemental Material [14]), for any PEPS, the ES of a
half-cylinder [cut indicated in Fig. 1(c)] is equal to the
spectrum of

� /
ffiffiffiffiffiffiffi
��

L

q
�R

ffiffiffiffiffiffiffi
��

L

q
; (1)

where �R is the state obtained at the virtual indices of the
right half-cylinder by contracting the physical indices with
the adjoint (cf. Figs. 1(d) and 1(f)) (with �R ¼ j�Rih�Rj,
and correspondingly for �L); for Nh � 1, this is just the
eigenvector corresponding to the largest eigenvalue of the
transfer operatorT; see Figs. 1(d) and 1(e). From there, one
can construct a boundary Hamiltonian H ¼ � log� which
acts on the virtual degrees of freedom at the boundary and
which exactly reproduces the ES. As demonstrated in
Ref. [9], this Hamiltonian is local if the system is in a
trivial phase and becomes nonlocal in symmetry-broken or
topological phases. In this work, we revisit the structure of
the boundary Hamiltonian for topological phases: There,
the transfer operator exhibits symmetries and degenera-
cies, giving rise to a nonunique fixed point. As we will
show, by properly interpreting the structure of the transfer
operator and identifying the physically relevant fixed
points, the locality of the boundary Hamiltonian can in
part be recovered also for topological phases.

Topological order in PEPS is accompanied by a virtual
symmetry of the tensor A, such as the invariance under the
representation of a (finite) symmetry group; see Fig. 1(b)
[13] (more general symmetries are given, e.g., by Hopf

algebras [15] or tensor categories [16]). For simplicity,
we focus on Z2 symmetry; i.e., A is invariant under Z�4,
for some unitary representation f1; Zg of Z2, but our find-
ings easily generalize to any finite group. In that case, the
four possible ground states are distinguished by (i) whether
j�Li and j�Ri are in the �1 eigenspace of Z�Nv (i.e., have
an even or odd parity of j1i’s, denoted as p ¼ e, o) and
(ii) by the possibility of having a string of Z’s along the
cylinder; see Fig. 1(h) [13]. It is convenient to picture the Z
string as coupled to a flux � 2 f0; �g threading the
cylinder.
The symmetry Fig. 1(b) of A induces the same symmetry

independently in the ket and bra layers of E [Fig. 1(d)] and
subsequently in T [Fig. 1(e)], i.e., ½T; Z�Nv � 1�Nv� ¼
½T;1�Nv � Z�Nv� ¼ 0, where the tensor product is with
respect to the ket and bra layers; that is, T has four blocks
corresponding to the Z�Nv eigenvalue (i.e., parity) for both
the ket and the bra layers. If we include the Z string
coupled to the flux [Fig. 1(h)], we find that the overall
transfer operator consists of four such transfer operators

T�0
� [Fig. 1(i)], each corresponding to a flux � for the ket

and �0 for the bra layer, respectively. Overall, it follows
that the transfer operator is block diagonal with 16 blocks

Tp0�0
p� , each corresponding to one of the 16 blocks 	p0�0

p�

(	 � �L, �R) of the fixed point density operator, with
parity p (p0) and flux � (�0) on the ket (bra) layer.
As an example, let us consider Kitaev’s toric code (TC)

[17]. Locally, it is a uniform superposition of all closed
loops on a lattice, which can be described by assigning dual
variables j�i (colors) to the plaquettes, with loops wher-
ever the dual variable changes (i.e., loops are boundaries of
colored regions); see Fig. 1(j). The PEPS is then obtained
by blocking the marked region and assigning the bonds to
the plaquette variables; see Fig. 1(k). The Z�4 symmetry of
the tensor reflects the fact that inverting the entire coloring
does not change the state. A Z string along the cylinder
[Fig. 1(h)] flips the coloring, which leads to an odd number
of horizontal strings, while an even (odd) Z�Nv parity in
j�Li and j�Ri gives a state with a plus (minus) superposi-
tion of an even and odd number of loops around the
cylinder.

For the TC, E ¼ ð1�4 þ Z�4Þ, and thus T�
� ¼

1
2 ð1�Nv �1�Nv þZ�Nv �Z�NvÞ ¼ Pe �PeþPo �Po, with

Pe=o ¼ 1
2 ð1�Nv � Z�NvÞ the projectors onto the even or odd

parity subspace at the boundary, while for �0 � �, T�0
� ¼

0. That is, T has four degenerate fixed points, correspond-

ing to the four ‘‘diagonal’’ blocks 	p�
p� of the boundary. The

four blocks correspond to the four ground states, and, as we
will see, their degeneracy is essential for the system to be
topologically ordered.
To better understand how the structure of the transfer

operator reflects the order of the system, we add string
tension to the TC, i.e., weigh every configuration with 
‘,
where ‘ is the total length of all loops; this can be achieved

(a) (b) (c)

(f) (g)(e)(d)

(h) (i)

(j) (k)

FIG. 1 (color online). Tensor networks for entanglement spec-
tra and for topological models; see the text for details.
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by locally modifying the tensors (keeping the Z�4
symmetry) and translates to a magnetic field in the
Hamiltonian [18,19]. This model exhibits a topological

phase transition at 
crit ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ffiffiffi

2
pp

� 0:644 (with

 ¼ 1 the TC and 
 ¼ 0 the vacuum) [18].

Figure 2(a) shows the modulus of the largest eigenvalue

�p0�0
p� for each block Tp0�0

p� of the transfer operator. We first

focus on the topological phase: We find that the four

‘‘diagonal’’ blocks Tp�
p� are essentially degenerate [the

splitting vanishes exponentially with Nv; see Fig. 2(b)],
which ensures that there are four stable ground states. At
the same time, the off-diagonal blocks are strictly smaller
than the diagonal blocks, which ensures that the four states
are linearly independent in the thermodynamic limit (see

below). In addition, we find that the diagonal blocks Tp�
p�

are gapped (not shown), which ensures that each block has

a unique fixed point 	p�
p�.

Altogether, we find that the fixed point of the transfer

operator is a direct sum of the 	p�
p� (i.e., block diagonal),

with weights determined by the boundary condition j�i.
Symmetrizing [cf. Eq. (1)] preserves this block structure,
and we find that the density operator �topo which reprodu-

ces the ES is of the form

�topo ¼ we0
e0�

e0
e0 	 wo0

o0�
o0
o0 	 we�

e��
e�
e� 	 wo�

o��
o�
o�; (2)

where the weights wp�
p� 
 0 can be adjusted arbitrarily by

appropriate boundary conditions. We can now define a
Hamiltonian H ¼ � log� which reproduces the ES.
H commutes with both Z parity and flux; that is, there
are H�, � ¼ 0, �, satisfying ½H�; Z

�Nv� ¼ 0; i.e., the H�

obey a superselection rule inherited from the topological
symmetry.

Hamiltonians with different weights wp�
p� (H�) and qp�p�

(H0
�) are related via H0

� ¼ H� � logðqe�e�=we�
e�ÞPe 	

logðqo�o�=wo�
o�ÞPo. This implies two things: First, the

boundary Hamiltonians obtained for different boundary
conditions differ just by a universal contribution
which only depends on the underlying symmetry
but not on microscopic details. Second, since Pe=o ¼
1
2 ð1�Nv � Z�NvÞ, the boundary Hamiltonian will generally

be highly nonlocal, and, if at all, will only be local for a

specific choice wp�
p�.

As discussed in appendix B in the Supplemental
Material [14], the only choice for which we can expect a

local Hamiltonian is we�
e� ¼ wo�

o�. The result for the TC

with string tension is shown in Fig. 3, and we find indeed
that the terms in H� decay exponentially with distance;

i.e., H� is local (see appendix C in the Supplemental

Material [14]). Note that by combining the locality of
H� with the symmetry ½H�; Z

�Nv� ¼ 0, we can already

infer that H� must be well approximated by a parity-

preserving nearest-neighbor Hamiltonian; in the language
of creation and annihilation operators, this amounts to

FIG. 2 (color online). (a) Maximal eigenvalues�p0�0
p� for the TC

with string tension (relative to �e0
e0) for Nv ¼ 12. (b),(c) Splitting

(b) 1� j�p�
p�=�

p0
p0j and (c) 1� j�o0

e0=�
p0
p0j for 
 ¼ 0:65; 0:66; . . .

(blue dashed lines, topological phase) and 
 ¼ 0:64; 0:63; . . .
(green solid lines, trivial phase). The red dotted line is 
 ¼
0:644 � 
crit. The calculations (as well as the ones in Figs. 3
and 4) have been carried out using exact column-wise contraction
(cf. Refs. [9,20,21]) and are thus exact.

FIG. 3 (color online). (a) Interaction range of H0 for the TC
with string tension (Nv ¼ 12), obtained using Eq. (2) with equal
weights, which is the correct interpretation for the topological
sector. Interactions in the topological phase (black lines, 
 ¼
0:7; 0:75; . . . ) decay exponentially. In the trivial phase (gray
lines, 
 ¼ 0:60; 0:55; . . . ), the interpretation is no longer valid,
seemingly leading to a nonlocal Hamiltonian. (The red dashed
line is 
crit.) (b) By changing to the interpretation of the transfer
operator which is valid in the trivial phase (see the text), we
obtain aH0 which is local in the trivial phase. The blue solid line
shows k�triv ��ðBÞk1=Nv for Nv ¼ 12 (right scale), cf. the
text, and the red dashed line shows the corresponding B (left
scale). The comparison with k�triv ��ðB ¼ 0Þk1=Nv (green
dotted line) and k�topo ��ðBÞk1=Nv [yellow dash-dotted line,

cf. Eq. (2)] shows that the boundary Hamiltonian is well ap-
proximated by B

P
Xi in the trivial phase, while the decay in the

topological phase is due to the high temperature. (c) Comparison
of H0 and H�. The plot shows kH0 �F ðH�Þkop=kH0 �H�kop,
where F flips the sign of all terms which change the parity
across the boundary (see the text); in the topological phase, the
difference converges to 0 exponentially in Nv.

PRL 111, 090501 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

30 AUGUST 2013

090501-3



hopping, pairing, repulsion, and on-site potential terms.
Closer analysis yields that H� is very well approximated

by an Ising Hamiltonian
P

XiXiþ1, with strongly sup-
pressed longer-range Ising couplings and even more
strongly suppressed many-body terms. One would natu-
rally expect that H0 and H� only differ by a phase ei� ¼
�1 for terms which change the parity across the boundary,
which is indeed what we observe [Fig. 3(c)].

Figure 3 also shows thatH� becomes long-ranged at the

phase transition and stays so in the trivial phase, seemingly
contradicting earlier findings [9] where the Hamiltonian in
the trivial phase was local. However, the derivation of H�

was based on the structure of the transfer operator, which
changes radically in the trivial phase (Fig. 2): First, eigen-
values corresponding to � ¼ �, �p�

p�, become strictly
smaller than one. This implies that the norm of states in
the � ¼ � sector vanishes exponentially in Nh, and thus,
states in that sector are unstable: Any random symmetry-
preserving perturbation of A (and thus of the parent
Hamiltonian) will yield an admixture of the � ¼ 0 sector
at Nvth order, and thus, for an appropriate ratio Nv=Nh, the
� ¼ � sector vanishes in the thermodynamic limit. It
remains to see what happens to the two states in the
� ¼ 0 sector. There, j�o0

e0 j ! �e0
e0 ¼ �o0

o0 [see Fig. 2(c)],

which implies that the two states in this sector become
equal in the thermodynamic limit, since their overlap is

given by tr½To0
e0�=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr½Te0

e0�tr½To0
o0�

q
!ð�o0

e0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�e0
e0�

o0
o0

q
ÞNh !1.

Thus, studying the transfer operator reveals that the system
in fact has only one ground state.

In accordance with the changed structure of the transfer
operator in the trivial phase, the boundary state �triv can be

any state �triv ¼
P

p;p0wp00
p0 �

p00
p0 
 0, which all have the

same spectrum but yield different Hamiltonians.
Choosing we0

e0 ¼ wo0
o0 ¼ 1

2 and extremal wo0
e0 ¼ we0

o0 (such

that �triv becomes singular), we find that �triv is well
approximated by �ð�Þ ¼ exp½�B

P
Xi�=Z; see Fig. 3(b).

Let us briefly summarize our findings: We have found
that the virtual symmetry of topological PEPS [Fig. 1(b)]
induces a block-diagonal structure of the transfer operator;
topological order is witnessed by the degeneracy of the
diagonal blocks. We can then construct boundary
Hamiltonians H0

� ¼ �topoHtopo þH�, with a universal

part Htopo ¼ Z�Nv which only depends on the symmetry

(which is universal) and a �topo which depends on the

boundary conditions. The nonuniversal part H� is local

(i.e., vanishes under RG) and thus represents the short-
range physics of the system, and it is independent of
boundary conditions. A phase transition is accompanied
by a diverging interaction length of H�. H� inherits the

PEPS symmetry ½H�; Z
�Nv� ¼ 0, which—together with

the locality ofH�—allows us to infer much of its structure,

and it couples to the flux in a natural way. Note that
the symmetry also constrains the structure of the physical
edge modes: The space of zero-energy excitations is

spanned by putting arbitrary boundary conditions jbi
with hbje�Hjbi> 0 at the open bonds, which restricts
them to Z�Njbi ¼ jbi.
Our findings generalize straightforwardly to cylinders

with two virtual boundaries [Fig. 1(b)], as encountered
when studying the ES on a torus. From the form of the
transfer operator, it is immediate that H0

� ¼ �topoðPeven �
Peven þ Podd � PoddÞ þH� � 1þ 1 �H�, where �topo ¼
1 (i.e., the total parity must be even) and where the
nonuniversal H� is the same as before. (H� can differ

for the two boundaries if T is not Hermitian.) The form
of the boundary also has consequences for the topological

entropy Sð	LÞ ¼ Sð�Þ ¼ H ðfwp�
p�gÞ þ

P
wp�

p�Sð�p�
p�Þ,

withH ð�Þ the Shannon entropy: Depending on the bound-
ary conditions, H ðfwp�

p�gÞ changes and thus the topologi-

cal correction varies between 1 and �1. Note that our
findings generalize to any finite group, where the blocks
of the transfer operator are labeled by the particle types of
the model [17].
We have applied our findings to the resonating valence

bond (RVB) state on the kagome lattice and an interpola-
tion from it to the TC; see appendix D in the Supplemental
Material [14] and Ref. [20]. The tensors for the RVB have a
Z2 symmetry with representation Z ¼ diagð1; 1;�1Þ; addi-
tionally, there is an SU(2) symmetry with representation
1
2 	 0. Thus, we expect the boundary Hamiltonian to

describe a system with a spinful particle or vacuum per
site, with SU(2) invariance and conserved particle parity—
similar to a t-J model, but without particle number con-
servation. Figure 4(a) shows the spectrum of the transfer
operator for the RVB to TC interpolation: The four
‘‘diagonal’’ blocks are essentially degenerate (inset), while
the off-diagonal blocks are suppressed, witnessing topo-
logical order in the system. The boundary Hamiltonian H0

1e-8

1e-6

1e-4

1e-2

interaction strength

1 2 3 4 5 6
interaction range

(b)

θ=0
θ=0.3
θ=0.5
θ=0.8

0 0.2 0.4 0.6 0.8 1
θ

(a)

|γe0
o0|

|γeπ
eπ|

|γe0
oπ|

|γo0
eπ|

|γo0
oπ|

|γe0
eπ|

4 6 8 10Nv

1e-6

1e-4

1e-2

0

0.2

0.4

FIG. 4 (color online). RVB to TC interpolation. (a) j�p0�0
p� j for

the off-diagonal blocks as a function of the interpolation pa-
rameter � (with � ¼ 0 the RVB and � ¼ 1 the TC), with
normalization �e0

e0 ¼ 1, for Nv ¼ 10. Inset: Maximal splitting

of the diagonal blocks j�p�
p�j (from top: � ¼ 0; 0:1; 0:2; . . . ).

(b) Interaction range along the interpolation for Nv ¼ 6, 8 (small
or large symbols).
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is local throughout [see Fig. 4(b)], with dominant hopping
and smaller repulsion and Heisenberg terms at the RVB
point. These results provide further evidence that the RVB
is in the same phase as the TC and that its edge physics
resembles a bosonic t-J model.
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