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The quantum state c is a mathematical object used to determine the probabilities of different outcomes

when measuring a physical system. Its fundamental nature has been the subject of discussions since the

inception of quantum theory. Is it ontic, that is, does it correspond to a real property of the physical

system? Or is it epistemic, that is, does it merely represent our knowledge about the system? Assuming a

natural continuity assumption and a weak separability assumption, we show here that epistemic

interpretations of the quantum state are in contradiction with quantum theory. Our argument is different

from the recent proof of Pusey, Barrett, and Rudolph and it already yields a nontrivial constraint on

c -epistemic models using a single copy of the system in question.
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Introduction.—Quantum theory textbooks usually start
from the hypothesis that to every physical system there
corresponds a mathematical object—a ray in Hilbert
space—called the quantum state. They then go on to
deduce the multitude of quantitative predictions that
make quantum theory so successful. But does the quantum
state correspond to a real physical state or does it merely
represent an observer’s knowledge about the underlying
reality? A major reason for doubting the reality of the
quantum state is that it cannot be observed directly: it
can only be reconstructed indirectly by lengthy state
estimation procedures [1,2]. Furthermore, an epistemic
interpretation of the quantum state could provide an intui-
tive explanation for many counterintuitive quantum phe-
nomena and paradoxes, such as the measurement postulate
and wave function collapse [3–5].

To formulate with precision the above question, we
assume, following Ref. [6], that every quantum system
possesses a real physical state (also called ontic state)
denoted �, which is independent of the observer. When a
measurement is performed on the system, the probabilities to
get different outcomes are determined by �. If an ensemble
of such systems is prepared, different members of the
ensemble may be found in different states �. A preparation
procedureQ therefore corresponds in general to a probabil-
ity distribution Pð�jQÞ over the real states. The probability
to obtain the outcome r when preparation Q is followed
by measurement M is PðrjM;QÞ ¼ P

�PðrjM;�ÞPð�jQÞ.
Such a model will reproduce the quantum predictions if
PðrjM;QÞ ¼ hc QjMrjc Qi, where c Q is the quantum state

assigned by quantum theory to the preparationQ, andMr is
the quantum operator describing the measurement.

We can now distinguish two classes of models of the
above type. A model is said to be c ontic if the preparation
of distinct pure quantum states always give rise to distinct
real states. That is, for every � either Pð�jQÞ ¼ 0 or
Pð�jQ0Þ ¼ 0 if the preparations Q and Q0 correspond to
different quantum states jc Qi � jc Q0 i. In this case, every

real state � is compatible with a unique pure quantum state.
The quantum state is ‘‘encoded’’ in� andwe can consider it
to represent a real property of the system, akin, e.g.,
to the total energy of a system in classical physics [7].
In the second class of models, known as c -epistemic mod-
els, preparation of distinct pure quantum statesmay result in
the same real state �. Formally, there exist preparations Q
and Q0 corresponding to distinct quantum states jc Qi �
jc Q0 i such that both Pð�jQÞ> 0 andPð�jQ0Þ> 0 for some

�. In this case, the quantum state is not uniquely determined
by the underlying real state and has a status analogous, e.g.,
to the Liouville distribution in statistical physics.
While nontrivial c -epistemic models exist in any fixed

dimension d [8,9], such models are necessarily highly con-
trived. Indeed, Pusey, Barrett, and Rudolph (PBR) have
recently shown that the predictions of c -epistemic models
are in contradiction with quantum theory under the assump-
tion, termed preparation independence, that independently
prepared pure quantum states correspond to product distri-
butions over ontic states [10]. In the present work, we derive
two alternative no-go theorems for c -epistemic models
based on a natural assumption of continuity. Our approach
shows that already at the level of a single system there exist
strong constraints on c -epistemic models. Furthermore,
our first no-go theorem readily translates in a simple ex-
perimental test, an implementation of which has been
reported in Ref. [11] using high-dimensional attenuated
coherent states of light traveling in an optical fibre.
Constraints on c -epistemic models at the level of single

quantum systems have also been obtained in Ref. [12]
using an assumption termed ontic indifference. This as-
sumption is in fact closely related to the one presented
here. In Sec. 2 of the Supplemental Material [13], we show
how to use our approach to recover, in a simple and clear
way, those of Ref. [12]. Arguments using single quantum
systems have also been used in Refs. [14,15] to show that
c -epistemic models cannot be ‘‘maximally epistemic’’
(in a sense defined in Refs. [14,15]).
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No-go theorems for c -epistemic models.—The key
motivation behind our result is that c -epistemic models
should satisfy a form of continuity. Indeed, we assign an
ontic status to c if a variation of c necessarily implies a
variation of the underlying reality �, and we assign it an
epistemic status if a variation of c does not necessarily
imply a variation of �. It is then natural to assume a form of
continuity for c -epistemic models: a slight change of c
induces a slight change in the corresponding ensemble of
�’s in such a way that at least some �’s from the initial
ensemble will also belong to the perturbed ensemble. We
use a slightly stronger form of continuity which asserts that
there are real states � in the initial ensemble that will remain
part of the perturbed ensemble, no matter how we perturb
the initial state, provided this perturbation is small enough.
Models that violate this condition are presumably very
contrived. Formally this continuity condition is defined as
follows (see Fig. 1 for a depiction of the difference between
c -ontic and �-continuous c -epistemic models).
Definition (� continuity).—Let � > 0 and let B�

c be the

ball of radius � centered on jc i; i.e., B�
c is the set of states

j�i such that jh�jc ij � 1� �. We say that a model is �
continuous if for any preparation Q, there exists an ontic
state � (which can depend on Q) such that for all prepara-
tions Q0 corresponding to quantum states j�Q0 i in the ball

B�
c Q

centered on the state jc Qi, we have Pð�jQ0Þ> 0.

Note that for notational simplicity we formulate our
results in the case where the set � ¼ f�g of real states is
finite or denumerable. The generalization of Theorems 1
and 2 below to measurable spaces is given in Sec. 1 of the
Supplemental Material [13]. This generalization is impor-
tant since reproducing the predictions of even a single

qubit requires an infinite, and probably even uncountably
infinite, number of real states (see Refs. [16–18] for evi-
dence to this effect).
Note also that the above definition introduces a connec-

tion between the overlap of quantum states and the overlap
of distributions in the ontic space of �0s. This is extremely
natural if we do not introduce a privileged direction in
Hilbert space (i.e., a preferred basis), since then the prop-
erties of c -epistemic models can only depend on the
geometry of the Hilbert space.
Our first result is a constraint on �-continuous models

for single systems.
Theorem 1:–There are no �-continuous models with

� � 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd� 1Þ=dp
reproducing the measurement statis-

tics of quantum states in a Hilbert space of dimension d.
Proof.—Consider d preparations Qk (k ¼ 1; . . . ; d) cor-

responding to distinct quantum states jc ki all contained in
a ball of radius �. By definition of a �-continuous model,
there is at least one � for whichminkPð�jQkÞ> 0 and thus

� � X
�

min
k

Pð�jQkÞ> 0: (1)

This last quantity can be viewed as a measure of the extent
to which distributions over real states overlap in the neigh-
borhood of a given quantum state. It was also introduced in
Ref. [10] where it was shown to be related to the variational
distance between the distributions Pð�jQkÞ.
Suppose now that a measurement M yielding one

of the possible outcomes r ¼ 1; . . . ; d is made on each of
the prepared systems. A �-continuous model then makes
the prediction

X
k

PðkjM;QkÞ ¼
X
k

X
�

PðkjM;�ÞPð�jQkÞ

� X
k

X
�

PðkjM;�Þmin
k
Pð�jQkÞ

¼ X
�

min
k

Pð�jQkÞ ¼ � > 0: (2)

According to quantum theory, however, there exist states
in a Hilbert space of dimension d contained in a ball of

radius � ¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd� 1Þ=dp
such that the left-hand side of

Eq. (2) is equal to 0. To show this, let fjji:j ¼ 1; . . . ; dg be a
basis of the Hilbert space. Consider the d distinct states

jc ki ¼ ð1= ffiffiffiffiffiffiffiffiffiffiffiffi
d� 1

p ÞPj�kjji. These states are all at mutual

distance jhc kjc ij ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd� 1Þ=dp
from the state jc i ¼

ð1= ffiffiffi
d

p ÞPjjji. Let the measurementM be the measurement

in the basis fjjig. Then PðkjM;QkÞ ¼ 0 for all k ¼ 1; . . . ; d
and thus

P
kPðkjM;QkÞ ¼ 0. (These states and measure-

ments were considered in the d ¼ 3 case in Ref. [19]). j
Note that the above result also applies if we only require

� continuity to hold around some fixed quantum states
rather than for all states in Hilbert space. Interestingly,
the c -epistemic model of Ref. [8] for Hilbert spaces of
dimension d is � continuous around a specific state with a
value of � saturating the above bound.

FIG. 1. Illustration of c -ontic and �-continuous c -epistemic
models. Depicted is the space � of ontic states, as well as the
support of the probability distribution Pð�jQkÞ for preparationQk

associated to distinct pure states c k, k ¼ 1; . . . ; 5. In c -ontic
models (left) distinct quantum states give rise to probability
distribution Pð�jQkÞ with no overlap. In �-continuous
c -epistemic models (right), states that are close to each other
(such as fc 1; c 2; c 3g and fc 3; c 4; c 5g) all share common ontic
states. However states that are further from each other (such as
c 1 and fc 4; c 5g) do not necessarily have common ontic states �.

PRL 111, 090402 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

30 AUGUST 2013

090402-2



Though one expects a c -epistemic model to be �
continuous for some value of �, the bound derived in
Theorem 1 may a priori seem arbitrary. This motivates
the following definition.

Definition (Continuity).—A c -epistemic model is con-
tinuous if there exists a nonzero � > 0 such that it is �
continuous.

Note that continuous c -epistemic models are easy to
construct. For instance the model introduced in Ref. [9]
is continuous. And taking convex combinations of the
c -epistemic models of Ref. [8] centered around different
states easily yields a continuous model.

Our second result shows that there are no c -epistemic
models that are both continuous and which satisfy the
following separability assumption. A similar condition
was independently introduced in Ref. [20], where it is
called ‘‘compactness.’’ Though weaker than the prepara-
tion independence assumption explicitly used by PBR, it is
already sufficient to derive their main result.

Definition (Separability).—Let Q be the preparation
of a physical system yielding with nonzero probability
Pð�jQÞ> 0 the real state �. A model is separable if n
independent copies Qn ¼ ðQ; . . . ; QÞ of the preparation

devices yield with nonzero probability Pð ~�¼�njQnÞ>0
a system in the joint real state �n ¼ ð�; . . . ; �Þ, for any
positive integer n.

Theorem 2:–Separable continuous c -epistemic models
cannot reproduce the measurement statistics of quantum
states in a Hilbert space of dimension d � 3.

Proof.—The idea of the proof is to fix an arbitrarily small
� > 0, and choose specific states j�ki, all within the ball of
radius �. Because of � continuity, these states share a
common ontic state. Using separability, the states j��n

k i
also share a common ontic state. By taking n large enough,
the distance between the tensor products j��n

k i becomes

large enough that we can apply Theorem 1. In more detail
we proceed as follows.

Consider d � 3 preparations Qk corresponding to the d

distinct states j�ki ¼ �jki þ ð�= ffiffiffi
d

p ÞPd
i¼1 jii with k¼

1;...;d, �¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�½ðd�2Þ=ðd�1Þ�1=n

q
, and �¼��=

ffiffiffi
d

p þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2=dþ½ðd�2Þ=ðd�1Þ�1=n

q
. It is easily checked that these

states are normalized h�kj�ki ¼ 1, have mutual scalar

product jh�kj�lij ¼ ½ðd� 2Þ=ðd� 1Þ�1=n for k � l, and

are all at distance jh�kj�ij ¼ 1� �nd from the state j�i ¼
ð1= ffiffiffi

d
p ÞPd

i¼1 jii, where �nd ¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðd� 1Þ�2=d

p
. In a

�nd-continuous model, these states share at least a common
real state �. The separability assumption then implies that
the states j��n

k i also share a common real state, and thus

that �n � P
�mink Pð�jQn

kÞ> 0. By the same argument as

in Theorem 1, it then follows that if a measurement M
yielding one of the possible outcomes r ¼ 1; . . . ; d is
performed on each of these systems, the quantityP

kPðkjM;Qn
kÞ � �n > 0.

Note now that the d n-fold copies j��n
k i are normalized

and have mutual scalar product jh��n
k j��n

l ij ¼ ðd� 2Þ=
ðd� 1Þ for k � l. There therefore exists a unitary trans-
formation U in the subspace Sd � C�n

d spanned by the d
states j��n

k i that carries out the transformation Uj��n
k i ¼

jc ki, where jc ki¼1=ð ffiffiffiffiffiffiffiffiffiffiffi
d�1

p ÞðPd
j¼1 jji�jkiÞ for some

basis fjjig. The states jc ki are identical to the states used
in the proof of Theorem 1. It follows that there exists a
d-outcome measurement M in C�n

d , which applied on the

states j��n
k i gives the same statistics as the measurement

in the basis fjjig applied on the states jc ki of Theorem 1.
We can therefore find a measurement such that
PðkjM;Qn

kÞ ¼ 0 and thus
P

kPðkjM;Qn
kÞ ¼ 0 in contradic-

tion with the prediction of a �nd-continuous separable
c -epistemic model.
We have thus shown that one can exclude �-continuous

separable models with � � �nd for any positive integers d
and n. For large n this bound behaves as � * �=n, with
�¼ðd�1Þ½logðd�1Þ�logðd�2Þ�=ð2dÞ, thereby implying
by taking n arbitrarily large that no c -epistemic model for
Hilbert spaces of dimension d � 3 can satisfy both the
assumptions of continuity and separability. j
It is interesting to compare how these no-go theorems could

be used in practice to test c -epistemic models (see
Refs. [11,21] for actual tests). Experimental tests that rule
out c -epistemic models for smaller values of the continuity
parameter � are clearly stronger. We thus consider how
resources scale as � ! 0. If we use the construction
of Theorem 1, then we need to use systems of dimension d ¼
Oð1=ð2�ÞÞ, and the resources needed to test c -epistemic
models increase as Oð1=�Þ. If we use Theorem 2, and take,
e.g., the dimension d ¼ 3, then one needs to prepare three
states j��n

1 i, j��n
2 i, j��n

3 i, where the number of copies of

each state is n ¼ Oð ln2=ð3�ÞÞ. Again the resources needed
increase asOð1=�Þ. Finally, we could also test �-continuous
c -epistemic models using the construction given in PBR [8].
In this caseweneed toprepare2n distinct states, eachofwhich

is a product state of n qubits, with n ¼ Oð ffiffiffi
2

p
ln2=

ffiffiffiffi
�

p Þ. The
resources required for the application of the PBRconstruction

therefore grow exponentially in 1=
ffiffiffiffi
�

p
. Experimental tests

based on Theorems 1 and 2 thus seemmuch easier than those
based on the PBR construction.
Note that our theoretical arguments and that of PBR rely

on the fact that certain quantum probabilities are exactly
equal to zero. However, these arguments are robust against
small deviations from these predictions, as expected in an
experimental implementation where noise is inevitably
present. Indeed, Eq. (2) implies that the observed value
�exp ¼ P

kPðkjM;QkÞ provides an upper bound on the

overlap � ¼ P
� mink Pð�jQkÞ of the ontic distributions

Pð�jQkÞ. A small value of �exp therefore translates into a

strong constraint on continuous c -epistemic models, since
it implies that these distributions have only a small com-
mon overlap. Similarly �nexp¼

P
kPðkjM;Qn

kÞ in Theorem 2

upper bounds the overlap �n ¼
P

~� mink Pð ~�jQn
kÞ of the
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n-copy joint distributions Pð ~�jQn
kÞ. This last quantity can

simply be related to the single-copy overlap � if we further
make the preparation independence assumption of PBR

that joint distributions Pð ~�jQn
kÞ ¼ Pð�1; . . .�njQn

kÞ ¼
Pð�1jQkÞ . . .Pð�njQkÞ are the product of individual
distributions, which then implies �n ¼ �n. Note that a
comparison of the sensitivity of the different tests to ex-
perimental noise is possible, but goes beyond the scope of
the present work. It would require a detailed modeling of
the state preparation and measurement procedures.

Discussion.—In his seminal paper on the probabilistic
interpretation of quantum theory, Born gave the wave func-
tion a functional interpretation: a mathematical object from
which the probabilities of different measurement outcomes
can be determined [22]. But the fundamental nature of this
object, a real physical wave or a summary of our knowledge
about physical systems, is a question that has divided phys-
icists ever since. A precise formulation of these two alter-
natives, opening theway to clearcut answers,was provided by
Harrigan and Spekkens [6]. If the wave function corresponds
to a real, ontic, property of physical systems, the preparation
of a system in different pure quantum states should always
result in different physical states. If, on the other hand, the
wave function has an epistemic status, such preparations
should sometimes result in the same underlying physical
state. PBR have recently introduced a no-go theorem that,
given certain assumptions, rules out this latter possibility [10],
thus awarding ontic status to the wave function. This result
can also be seen as a constraint on the structure of possible
extensions or generalizations of quantum theory. If they
reproduce the quantum predictions and satisfy these assump-
tions, then such theories can only supplement the wave func-
tion c with additional variables �0; i.e., a system should be
described by a physical state of the form � ¼ ðc ; �0Þ.

The theorem of PBR relies on two main assumptions.
The first, which is also unquestioned in the present work,
is that a system has a real and objective state � that is
independent of the observer. The second is an assumption
of ‘‘preparation independence,’’ which states that indepen-
dently prepared systems are described by independent
product distributions over real states. It can be replaced
by the weaker separability assumption used here.

In the present work, we reached the same conclusion as
PBR using a simple argument that relies on a natural
assumption of continuity. This notion of continuity captures
the intuition that in a model where the quantum state is
epistemic, a small variation of c does not necessarily imply
a variation of the underlying real state �. We derived a
fundamental limit on the degree of continuity of c -epistemic
models, as parametrized by a quantity �, already at the level
of single quantum systems (Theorem 1). Combining our
continuity assumption with a separability assumption, we
then showed that no c -epistemic model can reproduce all
the predictions of quantum theory (Theorem 2).

Besides their simplicity and the fact that they already
constrain c -epistemic models for single quantum systems,
an interest of our results is that they are easy to imple-
ment experimentally. Such an experimental test based on
Theorem 1 has been reported in Ref. [11].
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