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We develop a path-based approach to continuous-time random walks on networks with arbitrarily

weighted edges. We describe an efficient numerical algorithm for calculating statistical properties of the

stochastic path ensemble. After demonstrating our approach on two reaction rate problems, we present

a biophysical model that describes how proteins evolve new functions while maintaining thermo-

dynamic stability. We use our methodology to characterize dynamics of evolutionary adaptation,

reproducing several key features observed in directed evolution experiments. We find that proteins

generally fall into two qualitatively different regimes of adaptation depending on their binding and

folding energetics.
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Random walks on networks are ubiquitous across phys-
ics, chemistry, and biology, including molecular evolution
[1–3], protein folding [4], chemical reactions [5], transport
and search in complex media [6,7], stochastic phenotypes
[8], and cell-type differentiation [9–11]. Each node on the
network is assigned a value of the objective function (for
example, energy or fitness) which defines the rates of
jumping to the neighboring nodes. Statistical properties
of random walks determine quantities of interest such as
mean first-passage times and path length distributions.
Characterizing the diversity of stochastic paths is a par-
ticularly central issue in evolutionary theory [1–3,12,13].

Analytical treatments of random walks on networks tend
to be limited to simple models with equally weighted edges
[6,7,14,15], while direct simulations can be computation-
ally expensive, especially when rare events are considered.
In reaction rate theory, ensembles of stochastic trajectories
may be built by transition path sampling [16–19]; however,
this method involves considerable computational costs
in complex systems. Another alternative, transition path
theory [4,20,21], requires a numerical solution of the back-
ward equation. Neither approach directly addresses the
diversity of stochastic paths.

Here we develop a systematic and numerically efficient
path-based approach to stochastic processes. Our method is
applicable to continuous-time random walks [22] on net-
works with arbitrary edge weights. The approach is well
suited for obtaining statistics that describe the diversity
of paths, such as the distribution of path lengths and
path entropy. We use it to study adaptive dynamics of
proteins evolving a new function while maintaining
thermodynamic stability [12,23–26], a phenomenon of
central interest in both natural and directed evolution (the
latter aimed at engineering proteins with novel enzymatic
activities [26,27]).

A continuous-time random walk (semi-Markov jump
process) on the discrete state space S is defined by a set
of jump probabilities h�0jQj�i for � ! �0 (�, �0 2 S),
and probability distributions c �ðtÞ of waiting time t in
state � before making a jump [22]. We assume that c �ðtÞ
has finite mean wð�Þ for all � 2 S. Note that S equipped
with the jump matrix Q defines a network with directed,
weighted edges.
Define a path ’ as a sequence of states f�0; �1; . . . ; �‘g.

The time-independent probability of the system taking the
path ’ is �½’� ¼ �ð�0Þ

Q
‘�1
i¼0 h�iþ1jQj�ii, where �ð�0Þ

is the initial state probability. Let� be an ensemble of first-
passage paths from a set of initial states Si to a set of final
states Sf. The partition function for this ensemble isZ� ¼P

’2��½’�, and the entropy is S� ¼ �Z�1
�

P
’2��½’��

logð�½’�=Z�Þ. Let L½’� be the length (number of
jumps) of path ’, and let T ½’� ¼ P

‘�1
i¼0 wð�iÞ be the

average time of the path. We also define the average time
the path spends in state �, T �½’� ¼ P

‘�1
i¼0 ��;�i

wð�iÞ
(� is the Kronecker delta), and the indicator functional
I�½’�, which equals 1 if ’ contains � and equals zero
otherwise.
The average time of paths in the ensemble is then given

by ��� ¼ hT i� ¼ Z�1
�

P
’2�T ½’��½’�. The average

path length is �‘� ¼ hLi�, and the path length distribution
is given by ��ð‘Þ ¼ Z�1

�

P
’2��‘;L½’��½’� [19]. Let ‘sd�

be the standard deviation of path lengths, hI�i� the spatial
density of paths (the probability of paths in � that visit
state �), and hT �i�= ��� the fraction of time spent in state
�. We can also construct multipoint correlation functions
such as hI�0I�i�.
Let j�i be the vector of initial state probabilities and j�i

be the vector with 1 at position � and zero otherwise. For
each step ‘ and intermediate state �, we can recursively
calculate P‘ð�Þ ¼ h�jQ‘j�i, T‘ð�Þ, and �‘ð�Þ, which
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are the total probability, average time, and entropy,
respectively, of all paths that end at � in ‘ steps

P‘ð�0Þ ¼ X
nn � of �0

h�0jQj�iP‘�1ð�Þ;

T‘ð�0Þ ¼ X
nn � of �0

h�0jQj�i½T‘�1ð�Þ þ wð�ÞP‘�1ð�Þ�;

�‘ð�0Þ ¼ X
nn � of �0

h�0jQj�i½�‘�1ð�Þ

� logh�0jQj�iP‘�1ð�Þ�; (1)

where P0ð�Þ ¼ �ð�Þ and T0ð�Þ ¼ �0ð�Þ ¼ 0 for all � 2
S, and the sums run over all nearest neighbors (nn) � of �0
(� 2 Sf are treated as absorbing states). Therefore,

Z� ¼ X1

‘¼1

X
�2Sf

P‘ð�Þ; ��ð‘Þ ¼ 1

Z�

X
�2Sf

P‘ð�Þ;

��� ¼ 1

Z�

X1

‘¼1

X
�2Sf

T‘ð�Þ; S� ¼ 1

Z�

X1

‘¼1

X
�2Sf

�‘ð�Þ:

(2)

Similarly, we can calculate state-dependent quantities
such as hI�i� and hT �i�. The recursion relations are

P‘ð�0;�Þ ¼
8<
:

P
nn �00 of �0

h�0jQj�00iP‘�1ð�00;�Þ; �0 � �;

P‘ð�Þ; �0 ¼ �;

T‘ð�0;�Þ ¼ X
nn �00 of �0

h�0jQj�00i½T‘�1ð�00;�Þ

þ ��;�00wð�00ÞP‘�1ð�00;�Þ�; (3)

with the initial conditions P0ð�0;�Þ ¼ T0ð�0;�Þ ¼ 0 for
all �, �0 2 S, � � �0 [P0ð�;�Þ ¼ �ð�Þ, T0ð�;�Þ ¼ 0].
Then hI�i� ¼ Z�1

�

P1
‘¼1

P
�02Sf

P‘ð�0;�Þ and hT �i� ¼
Z�1

�

P1
‘¼1

P
�02Sf

T‘ð�0;�Þ. Finally, we can calculate

mean path divergence that characterizes the spatial diver-
sity of the paths in � [13]

D� ¼ X1

‘¼1

X
�;�02S

dð�;�0ÞP‘ð�ÞP‘ð�0Þ; (4)

where dð�;�0Þ is a distance metric on S.
Our algorithm allows for very general definitions of the

path ensemble � without having to explicitly enumerate
paths. For instance,� can include paths that begin and end
at arbitrary sets of states, or are disallowed from passing
through arbitrary sets of intermediate states. The time
complexity of our algorithm is Oð�N�Þ for Z�, ��ð‘Þ,
���, S�, and Oð�N2�Þ for hI�i�, hT �i�, D�, where �
is the average number of nn, N is the number of states

visited by paths in�, and�� �‘� is the cutoff path length.

For simple random walks, �‘� � Ndw=df for dw � df and
�‘� � N for dw < df, where dw is the dimension of the

walk and df is the fractal dimension of the space [7,15].

Therefore, the algorithm scales as Oð�N1þdw=df Þ for
dw � df and Oð�N2Þ for dw < df, automatically account-

ing for the sparseness of network connections.
We now illustrate our approach on two reaction rate

problems [28]. First we consider a 2D double-well potential
Vðx; yÞ on a square lattice S [See Supplemental Material
[29], Fig. S1(a)]. The potential has two metastable states A
and B with boundaries @A and @B. The initial states on @A
and @B are weighted by the equilibrium distribution

�ðx; yÞ ¼ e��Vðx;yÞ=
P

ðx;yÞ2Se
��Vðx;yÞ, where � ¼ 1=T is

the inverse temperature. Let us define the ensemble of
transition paths (TPs) between A and B: these paths begin
on either @A or @B and end on the opposite boundary
without crossing any boundaries in between [17,18].
Similarly, we define the ensemble of return paths (RPs)
which come back to the boundary on which they started.
Many TP and RP statistics, such as the distribution of

path lengths �TPð‘Þ, mean path divergence DTPþRP, the
density of states pðx; yjTPÞ ¼ hT ðx;yÞiTP= ��TP, the total TP
flux �, and reaction rates of transitions between A and B,
can be calculated straightforwardly with our method. The
density of states on transition paths pðx; yjTPÞ shows two
symmetric channels by which most reactions between A
and B occur [See Supplemental Material [29], Fig. S1(b)].
To determine the cutoff path length �, we recall

that ��ð‘Þ � e�	‘= �‘� for sufficiently large ‘, where 	 ¼
Oð1Þ [See Supplemental Material [29], Fig. S2(a)] [15].
Other path statistics, such as the average time ���ð‘Þ of
paths up to length ‘ [See Supplemental Material [29],
Fig. S2(b)], also show exponential asymptotic behavior.
Therefore, in practice, one need only consider paths with
‘ <� and infer the contributions of all longer paths from
an exponential fit to the tail, taking advantage of the fact
that information about longer paths is already contained in
the properties of shorter paths.
In general, we expect paths to increase in length and

diversity at higher temperatures. However, between � ¼ 5
and � ¼ 1 the paths become shorter and less diverse as
T increases [See Supplemental Material [29], Figs. S2(c),
S2(d)]. This is a signature of entropic switching [30]: at a
critical value of �, the two most energetically favored
pathways that dominate the low-T behavior become less
favorable than the shorter path through the middle.
Entropic switching is reflected in plots of the relative

path divergence, ��TP, �‘TP, and STP [See Supplemental
Material [29], Figs. S2(c), S2(d)], which readily generalize
to arbitrary network spaces.
We can also calculate the continuous-space limit of the

TP flux � and the reaction rates. We analytically continue �
as a function of the lattice spacing �x [See Supplemental
Material [29], Fig. S2(a), inset], yielding continuous-limit
rates of kA!B ¼ kB!A � 1:3� 10�4. Therefore, one need
only calculate � at a few finite lattice spacings in order
to infer continuous-limit rates. Our approach can be
straightforwardly extended to reactions on more complex
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structures such as fractals, which serve as models of
transport in disordered media [6] (See Supplemental
Material [29], Fig. S3).

We now apply our methodology to study evolution of
protein function; here the function is defined as binding a
target molecule such as an enzymatic substrate or another
protein. Let Ef be the protein folding free energy (i.e., the

free energy difference between its folded and unfolded
conformations), and Eb the free energy of binding relative
to the chemical potential of the target. Then the protein has
the probability of folding 1=ð1þ e�Ef Þ and, independently,
the probability of binding 1=ð1þ e�EbÞ, where � ¼
1:7 ðkcal=molÞ�1 is inverse room temperature. We assume
that the protein contributes fitness 1 if it both folds and
binds, and fitness f0 < 1 otherwise [31]. Then fitness
averaged over all proteins in an organism is given by

F ðEf; EbÞ ¼ 1þ f0ðe�Ef þ e�Eb þ e�ðEfþEbÞÞ
ð1þ e�Ef Þð1þ e�EbÞ : (5)

The folding and binding energies are functions of the
amino acid sequence �. We assume that the protein has a
small number L of ‘‘hot-spot’’ residues at the binding
interface [32], and that each residue makes an additive
contribution to the total energy [33]: Efð�Þ ¼ E0

f þP
L

¼1 �fð
;�
Þ, Ebð�Þ ¼ E0

b þ
P

L

¼1 �bð
;�
Þ, where

E0
f, E

0
b are overall offsets and �fð
;�
Þ, �bð
;�
Þ are

the folding and binding energy contributions of amino acid
�
 at position 
. The offset E0

f is a fixed contribution to

folding energy from the rest of the protein, which we
assume to be perfectly adapted; �f’s are sampled from a

Gaussian with 1:25 kcal=molmean and 1:6 kcal=mol stan-
dard deviation [34]. Since binding hot spots typically have
a minimum penalty of 1–3 kcal=mol for mutations away
from the wild-type amino acid [35], we set �bð
;�



bbÞ ¼ 0

for all 
 [�bb is the best-binding sequence: Ebð�bbÞ ¼
E0
b], and sample the rest of �b ’s from an exponential

distribution defined in the range of ð1;1Þ kcal=mol, with
2 kcal=mol mean [36]. Here we consider L ¼ 5 hot-spot
residues and a reduced alphabet of k ¼ 8 amino acids
grouped by physicochemical properties, resulting in 85 ¼
32768 unique sequences. The exact choice of these pa-
rameters has little effect on the overall qualitative features
of the model.

Our fitness landscape is nonlinear and, thus, epistatic:
the fitness effect of a given mutation depends on the entire
background sequence [1–3]. However, the landscape is
correlated [37] (as kL sequences are determined by 2Lk
�f and �b parameters), and, thus, differs from completely

random landscapes [10] in a manner consistent with ex-
perimental studies [3,13]. Our model naturally incorpo-
rates evolutionary tradeoffs between function and
stability [25,26,38], even though binding and folding ener-
getics are uncorrelated [24].

We sample one set of �f ’s and two sets of �b’s, one for

the old binding target and one for the new one. This

procedure defines two fitness landscapes, F 1 and F 2,
through Eq. (5) (E0

f and E0
b are fixed). Initially, each

organism in the population has the sequence with maxi-
mum fitness under F 1. The population then adapts to
binding the new target on F 2. Mutations occur at a rate
LNu � ðlogNÞ�1, where N is the effective population size
and u is the mutation rate per amino acid, making the
population effectively monomorphic [39]. We assume the
strong-selection limit: beneficial mutations are guaranteed
to fix, while deleterious and neutral mutations are rapidly
eliminated [40]. With Markovian waiting times, the jump
probabilities are h�0jQj�i ¼ 1=bð�Þ if F ð�0Þ>F ð�Þ
and zero otherwise, where bð�Þ is the number of beneficial
mutations possible from �. Note that in this limit our
results are independent of f0, and Nu only affects
the overall time scale. The path ensemble consists of all
adaptive paths (APs) (first-passage paths to local maxima

(a) (b)

FIG. 1 (color online). Two phases of adaptive protein evolu-
tion. (a) Binding phase, with E0

f ¼ �17 kcal=mol and E0
b ¼

�3 kcal=mol. (b) Folding phase, with E0
f ¼ �3 kcal=mol and

E0
b ¼ �17 kcal=mol. Note that �f’s and the two sets of �b ’s (for

F 1 and F 2) are the same in (a) and (b). Top panels show the
global distribution of all 85 sequences in energy space according
to F 2. Blue crosses indicate the best-folding and best-binding
sequences, red triangles correspond to local fitness maxima on
F 2 (shaded according to their commitment probabilities), and
black stars indicate the initial state for adaptation (global maxi-
mum on F 1). Black lines are contours of constant fitness on F 2.
In the bottom panels, only the region of energy space accessible
to APs (outlined by dashed lines in the top panels) is shown.
Representative APs are traced in blue and green; black circles
indicate intermediate states along APs, sized according to
the AP density hI�iAP; small gray circles are states inaccessible
to APs.
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on F 2). Figure 1 shows two examples of F 2 with repre-
sentative APs.

Since our fitness landscapes [Eq. (5)] are randomly
generated, we focus on their generic properties averaged
over many realizations of �f and �b (Figs. 2 and 3). Scans

of the E0
f � E0

b parameter space reveal the existence of two

qualitatively different phases of adaptation. One, which we
call the binding phase, is observed when E0

f is low and E0
b

is high [see Fig. 1(a) for an example]. In this case, the mean
number of local fitness maxima is very low (Fig. 2) and �f,

the average Hamming distance between these maxima and
the best-folding sequence (with the lowest Ef), is large

[Fig. 2(b)]. In contrast, �b, the average Hamming distance
to the best-binding sequence, is close to zero. Thus, in this
phase the need to bind dominates adaptation.

In the opposite limit (high E0
f and low E0

b) [see Fig. 1(b)

for an example], the folding phase is observed in which the
mean number of local maxima is also low (Fig. 2), but
these maxima are much closer to the best-folding rather
than the best-binding sequence [Fig. 2(b)]. Here, the need
to preserve protein stability dominates adaptive dynamics.
In the crossover regime between these two phases, there
are many local maxima and, therefore, the most epistasis.
Epistasis is also reflected in the fact that the fraction of
local maxima accessible from the initial state and the
probability that the global maximum has the largest com-
mitment probability (i.e., probability that a given maxi-
mum is reached from the initial state) are lower, while the
fraction of sequence space accessible to APs is higher in
this regime compared to the binding and folding phases
[Figs. 3(a) and 3(b)]. In the crossover regime, the evolu-
tionary tradeoff between binding and folding alone can
result in proteins with marginal folding stability, in contrast
with previous hypotheses that explain marginal stability

with mutational entropy [23] or a fitness function that
disfavors hyperstable proteins [41].
On average, paths in the binding phase are longer than

those in the folding phase, and adaptation takes more time
[Figs. 3(c) and 3(d)]. Paths in the binding phase have
higher entropy, indicating that adaptation involves a more
diverse set of pathways rather than a few dominant ones. In
the folding phase, APs tend to be short since the initial
sequence is often either close to, or already at a local
maximum [Figs. 3(b) and 3(c)]. A similar situation is
observed in directed evolution experiments where the ini-
tial sequence already has some affinity for the new ligand
but cannot increase it any further [12,42]. In such cases, the
sequence must first be mutated away from the local maxi-
mum. Furthermore, in the folding phase, folding energy
tends to increase at the beginning of paths and decrease
toward the end, as a consequence of the distribution of
sequences in energy space relative to the fitness contours
[Fig. 1(b)]. This is consistent with experiments in which
folding stability is sacrificed first and recovered later en
route to the new function [26].

(a) (b)

(c) (d)

FIG. 3 (color online). (a) Fraction of local fitness maxima
accessible from the initial state (solid green line), and probability
that the global maximum has the largest commitment probability
(committor) among all local maxima (dashed blue line).
(b) Probability that the initial sequence starts at a local maximum
resulting in no adaptation (solid green line), and fraction of
sequence space accessible to APs (dashed blue line). (c) Mean
path length �‘AP (dashed blue line), maximum possible path
length ‘max (dotted red line), and the average net distance �
between the initial state and final states (solid green line). On
average, proteins undergo twice as many substitutions as the net
distance �, and the maximum number of substitutions is three
times larger than �. (d) Mean adaptation time ��AP [in units of
ðNuÞ�1] (solid green line), and entropy SAP (dashed blue line).
All quantities in (c) and (d) are per-residue. The probability of no
adaptation in (b) is an average over 2� 104 landscape realiza-
tions; all other data points are averages over 5� 103 realiza-
tions, and realizations with no adaptation are excluded.

(a) (b)

FIG. 2 (color online). (a) Average number of local fitness
maxima as a function of the energy offsets E0

f and E0
b.

(b) Average number of local fitness maxima (solid green line),
average Hamming distance �f between the maxima and the best-

folding sequence (dashed blue line), and average Hamming
distance �b between the maxima and the best-binding sequence
(dotted red line) for the parameter subspace E0

f þ E0
b ¼

�20 kcal=mol. Note that the distance between two random
sequences is 1� 1=k ¼ 0:875, where k ¼ 8 is the alphabet
size. All data points are averages over 5� 103 realizations;
realizations with no adaptation are excluded.
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Our model can be extended to account for binding-
mediated stability, in which binding stabilizes an otherwise
disordered protein [43]. We can also incorporate
chaperone-assisted folding [44] by modifying E0

f or the

distribution of �f ’s. Furthermore, we can include ‘‘folding

hot spots’’ away from the binding interface to see if they
acquire stabilizing mutations as a buffer against destabi-
lizing but function-improving mutations at the interface
[25,26]. The role of neutral and weakly selected mutations
can be studied as well by using substitution rates from
more complex population genetics models [39,45],
although we expect nonadaptive substitutions to play little
role on short time scales. We look forward to studying
these extensions in future work.
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[30] P. Metzner, C. Schütte, and E. Vanden-Eijnden, J. Chem.
Phys. 125, 084110 (2006).
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