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We study a spin-1=2 SU(2) model on the honeycomb lattice with nearest-neighbor antiferromagnetic

exchange J that favors Néel order and competing six-spin interactions Q that favor a valence-bond-solid

(VBS) state in which the bond energies order at the ‘‘columnar’’ wave vector K ¼ ð2�=3;�2�=3Þ. We

present quantum Monte Carlo evidence for a direct continuous quantum phase transition between Néel

and VBS states, with exponents and logarithmic violations of scaling consistent with those at analogous

deconfined critical points on the square lattice. Although this strongly suggests a description in terms of

deconfined criticality, the measured threefold anisotropy of the phase of the VBS order parameter shows

unusual near-marginal behavior at the critical point.
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Many interesting materials at low temperature appear to
be on the verge of a quantum phase transition involving a
qualitative change in the nature of the ground state [1].
When one of the two competing T ¼ 0 phases spontane-
ously breaks a symmetry, the transition can be studied
using a path integral representation with a Landau-
Ginzburg action [2] written in terms of the order parameter
that characterizes the broken symmetry phase [1]. If phases
on two sides of the critical point break different symme-
tries, Landau-Ginzburg theory generically predicts a direct
first-order transition or a two-step transition with an inter-
mediate phase. However, this path integral description in
terms of order-parameter variables can sometimes involve
Berry phases in a nontrivial way [3–5]. The presence of
Berry phases, which correspond to complex Boltzmann
weights for the corresponding classical statistical mechan-
ics problem in one higher dimension [1], can invalidate the
conclusions reached by the Landau-Ginzburg approach.

In some of these cases, it is useful [6] to think in terms of
topological defects in one of the ordered states and view
the competing ordered state as being the result of the
condensation of these topological defects—this description
[6] makes sense only if the quantum numbers carried by
defects in one phase match those of the order-parameter
variable in the other phase. Under certain conditions, this
alternate ‘‘non-Landau’’ description generically predicts a
direct continuous transition [7,8] between the two ordered
states, in contrast to predictions of classical Landau-
Ginzburg theory. Square lattice S ¼ 1=2 antiferromagnets
undergoing a transition from a ground state with nonzero

Néel order parameter ~Ms to a valence-bond-solid (VBS)
ordered state, in which the ‘‘bond energies’’ (singlet pro-

jectors) Phiji � 1=4� ~Si � ~Sj on nearest-neighbor bonds

hiji in the x̂ (ŷ) direction develop long-range order at the
‘‘columnar wave vectors’’K1 ¼ ð�; 0Þ [K2 ¼ ð0; �Þ], pro-
vide the best-studied example of such ‘‘deconfined critical

points’’ [7,8]. In this case, Z4 vortices in the complex VBS
order parameter � carry a net spin S ¼ 1=2 in their core,
suggesting that the onset of Néel order can be studied using

aCP1 description of ~Ms: ~Ms ¼ z�� ~���z�, where ~� are Pauli

matrices and the Z4 vortices are represented by a two-
component complex bosonic field z� coupled to a compact
U(1) gauge field A� [6–8], whose space-time monopoles

correspond [4,9] to hedgehog defects in the Néel order. Only
quadrupled hedgehog defects (corresponding to fourfold
anisotropy in the phase of �) survive the destructive inter-
ference of Berry phases on the square lattice [3–5,9], and
their irrelevance at criticality [7,8] leads to a noncompact
(monopole-free [10–12]) CP1 (NCCP1) description of this
transition.
Here, we use quantum Monte Carlo (QMC) simulations

[13–15] to study a spin-1=2 Heisenberg model on the
honeycomb lattice with nearest-neighbor antiferromag-
netic exchange J that favors Néel order and competing
six-spin interactions Q that favor VBS order at the ‘‘co-
lumnar wave vector’’ K ¼ ð2�=3;�2�=3Þ
H¼�J

X

hiji
Phiji�Q

X

hhijklmnii
ðPhijiPhkliPhmniþPhjkiPhlmiPhniiÞ;

where hhijklmnii denotes hexagonal plaquettes (Fig. 1).
We find evidence for a direct continuous Néel-VBS tran-
sition at ðQ=JÞc � qc � 1:190ð6Þ, with correlation length
exponent � � 0:54ð5Þ and anomalous exponents �N�eel �
0:30ð5Þ and �VBS � 0:28ð8Þ; within errors, these values
match corresponding results at the Néel-columnar VBS
transition on the square lattice [16–18]. In addition, we
find evidence for apparently logarithmic violations of
finite-temperature scaling of the uniform spin susceptibil-
ity �u and stiffness 	s, analogous to the square-lattice case
[17]. However, in sharp contrast to the square-lattice tran-
sition at which the fourfold anisotropy vanishes for large
systems [18–20], a careful study of the threefold anisotropy
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in the phase of � reveals surprising near-marginal behav-
ior on the honeycomb lattice.

To put these results in context, we first note that Z3

vortices in � carry a net spin S ¼ 1=2 in their core on
the honeycomb lattice (Fig. 1) analogous to Z4 vortices on
the square lattice. Therefore, a continuum CP1 description
[6] is again appropriate. The monopole creation operator in
the CP1 description transforms under lattice symmetries
in the same way as the complex VBS order parameter� at
the ‘‘columnar wave vectors’’ on both the honeycomb and
square lattices, allowing one to view these VBS states as
monopole condensates [4,5,7,8]. On the honeycomb
lattice, it picks up a 2�=3 phase under lattice rotations.
Therefore, insertions of tripled monopoles are allowed on
the honeycomb lattice and manifest themselves as a three-
fold anisotropy felt by the phase of �. If this is relevant,
one expects the correct long-wavelength description of the
transition to be a conventional Landau-Ginzburg theory

written in terms of ~Ms and � and the transition to be first
order in the simplest scenario or proceed in two steps with
an intermediate phase [7,8]. On the square lattice, only
quadrupled monopoles are allowed in the CP1 description
since � picks up a �=2 phase under rotations. These can
be straightforwardly argued [7,8] to be irrelevant in the
NCCPN�1 theory at N ¼ 2 by noting that they are irrele-
vant both at N ¼ 1 [5,7,21–23] and in the N ! 1 limit
[5,7,21], leading to a NCCP1 description of the transition.

Thus, on one hand, the continuous nature and measured
exponents of the honeycomb lattice transition as well as the

finite-temperature behavior of 	s and �u point to a NCCP
1

description and suggest that tripled monopoles are irrele-
vant at the NCCP1 fixed point, allowing the physics of
deconfined criticality to control universal properties of
transitions to VBS order at wave vectorK. If the transition
to plaquette VBS order at the same wave vector K (Fig. 1)
in the frustrated J1-J2 is indeed direct and continuous
[24–27], our results suggest, on grounds of universality,
that it too would be governed by the NCCP1 fixed point.
On the other hand, our observation of near-marginal behav-
ior of the three-fold anisotropy at criticality suggests that
threefold monopoles remain important ingredients of the
honeycomb lattice transition at large scales, making it
remarkable that other signatures of the transition conform
to what one expects at the NCCP1 critical point. The
physicalN ¼ 2 case lies between two contrasting extremes
of the NCCPN�1 theory: tripled monopoles are relevant
at N ¼ 1 [5,7,21,22] and lead to a weakly first-order
transition [28], but strongly irrelevant in the N ! 1 limit
[5,7,21]. Our results therefore suggest that tripled mono-
poles switch from relevant to irrelevant behavior at or very
close to N ¼ 2 as one increases N in the NCCPN�1 theory.
It is quite clear that the continuous transition studied

here is very different from transitions to staggered VBS
order on square and honeycomb lattices [29,30], whose
strongly first-order nature can be attributed [30] to the
spinless cores of vortices in staggered VBS states [6].
Indeed, most of our results on universal critical properties
are very similar to previous QMC simulations of computa-
tionally tractable spin models exhibiting Néel-columnar
VBS transitions on the square lattice [16–18,20,31–37].
Whereas some of these studies [16–18,20,31–35] have
interpreted these square-lattice results within the frame-
work of the NCCP1 theory, albeit with some logarithmic
violations of scaling [17,31–33], other studies [36,37] have
interpreted very similar numerical data in terms of a flow to
a very weakly first-order transition at large length scales—
this is motivated by data on lattice-discretized NCCP1

models [38,39], some of which exhibit first-order behavior
[39]. Our work adds another dimension to this debate by
demonstrating that results otherwise consistent with the
NCCP1 description are accompanied by significant anisot-
ropy in the phase of � at the honeycomb lattice transition.
We study H on L� L honeycomb lattices (Fig. 1) of

2L2 spins, with periodic boundary conditions and L a
multiple of 12 up to L ¼ 72. We use a T ¼ 0 projector
QMC algorithm [14], with a sufficiently large projection
length cL3 (c ranging from 4 to 12) to ensure convergence
to the ground state. At small q values, the ground state is
Néel ordered, as characterized by the Néel order parameter
~Ms ¼ P

~r ~mð~rÞ=ð2L2Þ, where ~m is the local Néel field

~mð~rÞ ¼ ~S~rA � ~S~rB. Here, ~rA ( ~rB) refers to the A (B) sub-
lattice site belonging to Bravais lattice site ~r (Fig. 1). To
locate the quantum phase transition where Néel order is
lost, we compute the ‘‘dimensionless’’ Binder cumulant
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FIG. 1 (color online). The honeycomb lattice has a two-site
basis (labeled A and B) and elementary Bravais lattice trans-
lations ê1 and ê2, with distances from origin specified in units of
ê1 and ê2. Three types of bonds (labeled 0, 1, 2), oriented along
the three principal directions, ‘‘belong’’ to each Bravais lattice
site. Columnar and plaquette VBS order at wave vector K
correspond to different choices of the order-parameter phase,
with solid filled dimers on a link hiji denoting high (low) values
of hPhijii in the columnar (plaquette) state. Here, three domain

walls meet at the core of the Z3 vortex, which carries a net
S ¼ 1=2 spin. Also shown is a depiction of the six-spin interac-
tion terms in H.
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g ~Ms
¼ hð ~M2

sÞ2i=h ~M2
si2. It is expected to obey a scaling form

Fg ~Ms
ð�qNÞ if there is a continuous transition at qcN . Here,

Fg ~Ms
is a universal scaling function of the argument�qN �

ðq� qcNÞL1=�N where �N is the correlation length expo-
nent associated with Néel correlations. In the vicinity of

such a transition, we also expect the scaling form h ~M2
si ¼

L�ð1þ�N�eelÞG ~Ms
ð�qNÞ for the corresponding dimensionful

quantity.
At large q, we find that VBS order develops at the

‘‘columnar wave vector’’ K. This is characterized by
the VBS order parameter � ¼ P

~rV~r=ð2L2Þ, where V~r is
the local VBS order-parameter field

V~r ¼ ðP~r0 þ e2�i=3P~r1 þ e4�i=3P~r2ÞeiK� ~r:

Here, P~r� (� ¼ 0, 1, 2) denotes the singlet projector on the

bond � ‘‘belonging’’ to Bravais lattice site ~r (Fig. 1). To
quantify the strength of VBS order, we compute hj�j2i ¼
h�y�i. The phase of � distinguishes between two kinds
(columnar vs plaquette) of threefold symmetry breaking
VBS order at wave vector K. In the T ¼ 0 QMC simula-
tions, information on this phase is obtained from the esti-
mator E�, whose average E� over the QMC run gives the
quantum-mechanical expectation value h�i. Although E�

is a basis-dependent quantity, the histogram of its phase
can nevertheless be used to distinguish between the differ-
ent VBS states at the same wave vector [18,20]. The VBS
transition can be located by focusing again on a dimen-
sionless quantity, the (basis-dependent) Binder cumulant

[40] of E� defined as gE�
� jE�j4=ðjE�j2Þ2, which is

again expected to obey a scaling form FgE� ;Dð�qDÞ if

VBS order is lost via a continuous T ¼ 0 transition at

qcD. The argument�qD � ðq� qcDÞL1=�D of the universal
scaling function FgE� ;D uses �D, the correlation length

exponent associated with VBS correlations. Close to such
a continuous transition, we also expect the corresponding

scaling form hj�j2i ¼ L�ð1þ�VBSÞG�ð�qDÞ for the dimen-
sionful observable.

We pinpoint the T ¼ 0 Néel and VBS transitions from
the crossings of the Binder ratios g ~Ms

and gE�
as a function

of q for various L values—at this stage, we do not assume
that the two transitions coincide. Given the relatively sharp
nature of the crossings and the monotonic nature of their q
dependence for fixed L values (Fig. 2), we are confident
that the transition(s) is (are) continuous. We fit data for
each dimensionless (g ~Ms

, gE�
) and (appropriately scaled)

dimensionful quantity h ~M2
siL1þ�N�eel , hj�j2iL1þ�VBS , in the

critical range to a polynomial function of ðq� qcÞL1=�

(corresponding to a polynomial approximation of scaling
functions), with the corresponding qc, �, � and polynomial
coefficients being fitting parameters. For each dimension-
less quantity, the best-fit values vary somewhat depending
on the range of L and q studied. Results of such fits for one

choice of data set for the dimensionless quantities are
displayed as lines in Fig. 2, with the corresponding scaling
collapse displayed in Fig. 3. Similar results for Néel and
VBS correlators [41] confirm this.
On the basis of a detailed study of such fits, we estimate

qcN � 1:1936ð24Þ, qcD � 1:1864ð28Þ, �N ¼ 0:51ð3Þ,
�D ¼ 0:55ð4Þ, �N�eel ¼ 0:30ð5Þ, and �VBS ¼ 0:28ð8Þ. The
error bars quoted here reflect not just the error in determin-
ing best-fit values for a given data set for each quantity and
variation in these best-fit values from quantity to quantity
but also the dependence of these best-fit values on the

FIG. 2 (color online). Binder cumulants of ~Ms and E� as a
function of q for different sizes L (symbols), fit to a polynomial
in ðq� qcD=NÞL1=�D=N (lines) with best-fit values �N ¼ 0:5080,

�D ¼ 0:5237, qcN ¼ 1:1912, and qCD ¼ 1:1892. Best-fit values
are for the L � 48 part of the displayed data.

FIG. 3 (color online). Scaling collapse of Binder cumulants
of ~Ms and E�, using values of qcD, qcN , �D, and �N quoted
in legend of Fig. 2. Similar collapses for h ~M2

s iL1þ�N�eel ,
hj�j2iL1þ�VBS are also displayed, obtained using the following
best-fit values: qcN ¼ 1:1956, �N ¼ 0:5003, �N �eel ¼ 0:3539
(h ~M2

si), qcD ¼ 1:1864, �D ¼ 0:558, and �VBS ¼ 0:25 (hj�j2i).
Best-fit values are for the L � 48 part of the displayed data.
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data set used, i.e., the size of the critical window in q and
the range of L values used in the fits. We also emphasize
that our estimates of �VBS and �N�eel depend sensitively
on the value of qc, resulting in the relatively large error bars
quoted here. Nevertheless, we are in a position to exclude
the relatively tiny values of� that characterize conventional
second-order critical points in 2þ 1 dimensions. Since �N

coincides with �D within error bars, and the allowed ranges
of qcN and qcD almost touch at the 1� level, the simplest
interpretation of our data is that Néel order is lost and VBS
order sets in at a single continuous T ¼ 0 transition whose
location is estimated to be qc � 1:190ð6Þ, with correlation
exponent � ¼ 0:54ð5Þ and anomalous exponents �N�eel ¼
0:30ð5Þ and �VBS ¼ 0:28ð8Þ. This, taken together with the
relatively large values of �N�eel and �VBS characteristic of
deconfined critical points, suggests an interpretation in
terms of deconfined criticality.

Indeed, our estimates of �VBS, �N�eel, and � as well as of
the universal critical value g� ¼ 1:42ð1Þ of the Néel Binder
ratio at the T ¼ 0 transition are consistent within errors
with values for the analogous transition on the square
lattice [16–18]. We also study the temperature dependence
of the uniform spin susceptibility �u and the antiferromag-
netic spin stiffness 	s using finite-T QMC methods [15]
at low temperatures in the vicinity of this T ¼ 0 transition.
As is clear from Fig. 4, data for these quantities do not fit
well to standard scaling predictions. However, excellent

data collapse is obtained upon inclusion of logarithmic
violations of scaling, using the same functional forms
employed earlier on the square lattice [17]. These logarith-
mic violations may be related to (near) marginal operators
in the NCCP1 theory itself [42,43].
Finally, we turn to a study of the effective threefold

anisotropy felt by the phase of � at criticality, as seen in
histograms of E� near qc. The phase 
 of E� (inset of
Fig. 5) appears to feel significant anisotropy near the T ¼ 0
transition on the honeycomb lattice. To quantify this
anisotropy in the distribution PðE�Þ near the critical point,
we use a (dimensionless) estimator W3 ¼

R
dE�PðE�Þ�

cosð3
Þ, designed to be 0 for a U(1)-symmetric distribution
and 1 (� 1) for ideal columnar (plaquette) VBS states
(Fig. 1). In Fig. 5, we see that W3 appears to saturate to a
scale-independent constant at large L as the transition is
approached from the Néel phase, before growing with size
as one moves into a columnar VBS state. This near-
marginal behavior of the anisotropy in PðE�Þ at the largest
scales accessible to our simulations is very different from
the U(1) symmetric probability distribution ofE� seen near
the square-lattice critical point [18,19]. A more refined
scaling analysis [41] yields the same result, leading us to
our earlier suggestion that threefold monopole insertions
are (very close to) marginal at the NCCP1 critical point—
this is consistent with recent parallel work that discusses the
relevance of q-fold monopoles in SUðNÞ spin models
[44,45].
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A. Läuchli, M. Mambrini, A. Paramekanti, and P. Pujol for
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FIG. 4 (color online). 	sL does not obey standard quantum-
critical scaling 	sL ¼ hððq� qcNÞL1=�N Þ with dynamical expo-
nent z ¼ 1 (for instance, see drift in � ¼ 2L data shown in top
inset). In contrast 	sL= logðL=L0Þ with L0 ¼ 0:37 shows excel-
lent scaling. Symbols are QMC data, and lines are best fit to this
modified scaling form, with qcN � 1:190ð2Þ and �N � 0:54ð2Þ in
agreement with our T ¼ 0 results. Bottom inset: Temperature
dependence of �u=T close to criticality. In the Néel phase (q ¼
1:18), QMC data (symbols) are well fit by �u=T ¼ aþ b=T,
whereas on the VBS side (q ¼ 1:2), a sharp drop is observed as
expected. Close to criticality (q ¼ 1:19), QMC data are better fit
by �u=T ¼ cþ d logðJ=TÞ. Lines are fits to the above forms
with a ¼ 0:024, b ¼ 0:0005, c ¼ 0:022, and d ¼ 0:0024.

FIG. 5 (color online). The dimensionless Z3-anisotropy pa-
rameter W3 scales to zero with increasing L value in the Néel
phase but grows with size in the columnar VBS phase. Top inset
zooms in on the behavior of near-critical systems, which display
nearly scale-independent behavior. Bottom inset: histogram of
E� for L ¼ 36 at q ¼ 1:184 close to qcD. The brightness of each
color patch reflects the weight.

PRL 111, 087203 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

23 AUGUST 2013

087203-4



Mumbai, GENCI-CCRT (Grant No. 2012050225), and
CALMIP. This research is supported by the Indo-French
Centre for the Promotion of Advanced Research (IFCPAR/
CEFIPRA) under Project 4504-1, French ANR program
Grant No. ANR-08-JCJC-0056-01, and in part by the
National Science Foundation under Grant No. NSF
PHY11-25915, during a visit by one of us (K. D.) to
KITP, Santa Barbara. We also acknowledge support for
collaborative visits from the University Paul Sabatier,
Toulouse (K.D.) and TIFR (S. P.).

[1] S. Sachdev and B. Keimer, Phys. Today 64, No. 2, 29
(2011).

[2] L. D. Landau, E.M. Lifshitz, and E.M. Pitaevskii,
Statistical Physics (Butterworth-Heinemann, New York,
1999).

[3] F. D.M. Haldane, Phys. Rev. Lett. 61, 1029 (1988).
[4] N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694

(1989).
[5] N. Read and S. Sachdev, Phys. Rev. B 42, 4568 (1990).
[6] M. Levin and T. Senthil, Phys. Rev. B 70, 220403 (2004).
[7] T. Senthil, L. Balents, S. Sachdev, A. Vishwanath, and

M. P. A. Fisher, Phys. Rev. B 70, 144407 (2004).
[8] T. Senthil, A. Vishwanath, L. Balents, S. Sachdev, and

M. P. A. Fisher, Science 303, 1490 (2004).
[9] A. D’Adda, P. Di Vecchia, and M. Luscher, Nucl. Phys.

B146, 63 (1978); E. Witten, Nucl. Phys. B149, 285
(1979); S. Coleman, Ann. Phys. (N.Y.) 101, 239 (1976).

[10] M.-h. Lau and C. Dasgupta, J. Phys. A 21, L51 (1988);
Phys. Rev. B 39, 7212 (1989).

[11] M. Kamal and G. Murthy, Phys. Rev. Lett. 71, 1911 (1993).
[12] O. I. Motrunich and A. Vishwanath, Phys. Rev. B 70,

075104 (2004).
[13] A.W. Sandvik, Phys. Rev. Lett. 95, 207203 (2005).
[14] A.W. Sandvik and H.G. Evertz, Phys. Rev. B 82, 024407

(2010).
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correlators as well as Z3 anisotropy.

[42] F. S. Nogueira and A. Sudbo, Phys. Rev. B 86, 045121
(2012).

[43] L. Bartosch, arXiv:1307.3276.
[44] M. S. Block, R. G. Melko, and R.K. Kaul,

arXiv:1307.0519.
[45] K. Harada, T. Suzuki, T. Okubo, H. Matsuo, J. Lou, H.

Watanabe, S. Todo, and N. Kawashima, arXiv:1307.0501.

PRL 111, 087203 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

23 AUGUST 2013

087203-5

http://dx.doi.org/10.1063/1.3554314
http://dx.doi.org/10.1063/1.3554314
http://dx.doi.org/10.1103/PhysRevLett.61.1029
http://dx.doi.org/10.1103/PhysRevLett.62.1694
http://dx.doi.org/10.1103/PhysRevLett.62.1694
http://dx.doi.org/10.1103/PhysRevB.42.4568
http://dx.doi.org/10.1103/PhysRevB.70.220403
http://dx.doi.org/10.1103/PhysRevB.70.144407
http://dx.doi.org/10.1126/science.1091806
http://dx.doi.org/10.1016/0550-3213(78)90432-7
http://dx.doi.org/10.1016/0550-3213(78)90432-7
http://dx.doi.org/10.1016/0550-3213(79)90243-8
http://dx.doi.org/10.1016/0550-3213(79)90243-8
http://dx.doi.org/10.1016/0003-4916(76)90280-3
http://dx.doi.org/10.1088/0305-4470/21/1/009
http://dx.doi.org/10.1103/PhysRevB.39.7212
http://dx.doi.org/10.1103/PhysRevLett.71.1911
http://dx.doi.org/10.1103/PhysRevB.70.075104
http://dx.doi.org/10.1103/PhysRevB.70.075104
http://dx.doi.org/10.1103/PhysRevLett.95.207203
http://dx.doi.org/10.1103/PhysRevB.82.024407
http://dx.doi.org/10.1103/PhysRevB.82.024407
http://dx.doi.org/10.1103/PhysRevE.66.046701
http://dx.doi.org/10.1103/PhysRevE.66.046701
http://dx.doi.org/10.1103/PhysRevB.85.134407
http://dx.doi.org/10.1103/PhysRevLett.104.177201
http://dx.doi.org/10.1103/PhysRevLett.98.227202
http://dx.doi.org/10.1103/PhysRevB.80.212406
http://dx.doi.org/10.1103/PhysRevB.80.180414
http://dx.doi.org/10.1103/PhysRevB.80.180414
http://dx.doi.org/10.1142/S0217984990001318
http://dx.doi.org/10.1142/S0217984990001318
http://dx.doi.org/10.1103/PhysRevB.61.3430
http://dx.doi.org/10.1103/PhysRevLett.99.207203
http://dx.doi.org/10.1103/PhysRevLett.99.207203
http://dx.doi.org/10.1103/PhysRevB.84.024406
http://dx.doi.org/10.1103/PhysRevB.84.024406
http://dx.doi.org/10.1103/PhysRevLett.110.127205
http://dx.doi.org/10.1103/PhysRevLett.110.127205
http://dx.doi.org/10.1103/PhysRevLett.110.127203
http://dx.doi.org/10.1103/PhysRevLett.110.127203
http://arXiv.org/abs/1306.6067
http://dx.doi.org/10.1016/S0550-3213(96)00710-9
http://dx.doi.org/10.1103/PhysRevB.82.174428
http://dx.doi.org/10.1103/PhysRevB.82.174428
http://dx.doi.org/10.1103/PhysRevB.83.134419
http://dx.doi.org/10.1103/PhysRevB.83.134419
http://dx.doi.org/10.1103/PhysRevB.82.155139
http://dx.doi.org/10.1103/PhysRevB.82.155139
http://dx.doi.org/10.1103/PhysRevB.83.235111
http://dx.doi.org/10.1103/PhysRevB.83.235111
http://dx.doi.org/10.1103/PhysRevB.84.054407
http://dx.doi.org/10.1103/PhysRevLett.108.137201
http://dx.doi.org/10.1103/PhysRevLett.108.137201
http://dx.doi.org/10.1103/PhysRevLett.100.017203
http://dx.doi.org/10.1103/PhysRevLett.100.017203
http://dx.doi.org/10.1088/1742-5468/2008/02/P02009
http://dx.doi.org/10.1103/PhysRevLett.110.185701
http://dx.doi.org/10.1103/PhysRevLett.110.185701
http://arXiv.org/abs/0805.1494
http://dx.doi.org/10.1103/PhysRevLett.101.050405
http://dx.doi.org/10.1103/PhysRevLett.101.050405
http://link.aps.org/supplemental/10.1103/PhysRevLett.111.087203
http://link.aps.org/supplemental/10.1103/PhysRevLett.111.087203
http://dx.doi.org/10.1103/PhysRevB.86.045121
http://dx.doi.org/10.1103/PhysRevB.86.045121
http://arXiv.org/abs/1307.3276
http://arXiv.org/abs/1307.0519
http://arXiv.org/abs/1307.0501

