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Controlling a Nanowire Spin-Orbit Qubit via Electric-Dipole Spin Resonance
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A semiconductor nanowire quantum dot with strong spin-orbit coupling (SOC) can be used to achieve a
spin-orbit qubit. In contrast to a spin qubit, the spin-orbit qubit can respond to an external ac electric field,
an effect called electric-dipole spin resonance. Here we develop a theory that can apply in the strong SOC
regime. We find that there is an optimal SOC strength 74, = \/2/2, where the Rabi frequency induced by
the ac electric field becomes maximal. Also, we show that both the level spacing and the Rabi frequency
of the spin-orbit qubit have periodic responses to the direction of the external static magnetic field. These
responses can be used to determine the SOC in the nanowire.
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Introduction.—How to achieve a simple and efficient
way to manipulate a qubit is of basic importance in quan-
tum information processing (see, e.g., [1,2]). For the con-
ventional spin qubit [3], its manipulation can be
accomplished by using the electron spin resonance tech-
nique [4-8]. The spin-orbit qubit [9], unlike the conven-
tional spin qubit, contains both the orbital and the spin
degrees of freedom of an electron, owing to the spin-orbit
coupling (SOC) [10]. The spin-orbit qubit has an additional
advantage of being manipulable via an external ac electric
field, an interesting phenomenon called the electric-dipole
spin resonance (EDSR) [11-16]. With respect to generat-
ing a local ac magnetic field for manipulating a spin qubit,
it is much easier to produce a local ac electric field with
current experimental techniques.

The prerequisite for realizing a spin-orbit qubit in a
semiconductor quantum-dot structure is the availability
of SOC in the material [9]. There are two different types
of SOC in a semiconductor material, i.e., the Rashba SOC
due to structural inversion asymmetry [17] and the
Dresselhaus SOC due to the bulk inversion asymmetry
[18]. Usually, both types of SOC coexist in a material
[19], but which one plays a major part depends on the
properties of the material.

Semiconductor quantum wires with strong SOC, e.g.,
InSb nanowires [9,16], are of current interest. These have
been suggested as a potential platform for demonstrating
Majorana quasiparticles [20,21], and these can also be used
to produce a quantum dot for achieving a spin-orbit qubit
[9]. The coherent electric manipulation and the spectros-
copy of a nanowire spin-orbit qubit were investigated [16],
and a strong Rabi frequency of 100 MHz was also reported
recently [22]. Interestingly, the frequency of the driving ac
electric field depends on the direction of the applied static
magnetic field [16]. As our study shows, this dependence is
actually a signature of the strong SOC in the nanowire.
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In this Letter, we provide an explicit theoretical expla-
nation for the EDSR effect in a nanowire quantum dot with
strong SOC. In comparison with previous theories, where
the SOC was regarded as a perturbation [23-26], we con-
sider a strong SOC. Instead, we treat the external static
magnetic field as a perturbation. It is estimated that our
theory can be valid when using a magnetic field as strong as
0.1 T. This field is much stronger than the magnetic field
usually used in experiments on quantum devices. With our
theory applicable in the strong SOC regime, it reveals that
the Rabi frequency induced by an external ac electric field
has a maximum value at an optimal SOC strength, instead
of the Rabi frequency that is linearly proportional to the
SOC strength. As our theory shows, this linear dependence
is only valid in the weak SOC regime. Also, our theory
shows that the SOC can be probed by monitoring both the
spectrum and the EDSR responses of the spin-orbit qubit
to the direction of the external static magnetic field.
Therefore, it can provide a useful method to determine
both Rashba and Dresselhaus SOCs in the nanowire.

Spin-orbit qubit based on a nanowire quantum dot.—We
consider a gated nanowire quantum dot with strong SOC,
where an electron is confined in a 1D harmonic well and
subject to a static magnetic field [27,28]. The Hamiltonian
reads

21 B
= P 4,02 + agotp + apotp + ST o,
2m, 2 2
(L
where m, is the effective electron mass, p = —ihd/dx,

agp) is the Rashba (Dresselhaus) SOC strength, up is
Bohr magneton, and ¢" =n - o = 0*cosf + 0 sinf,
with n = (cos#, sinf) representing the direction of the
external static magnetic field [see Fig. 1(a)].

Even though the Hamiltonian (1) looks simple, it is very
difficult to analytically calculate its energy spectrum by
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FIG. 1 (color online). (a) Schematic diagram of the unit vec-
tors n, a, and b, where n = (cos#, sinf) represents the direction
of an external static magnetic field B, a = (cose, sing), with
¢ = arctan(ag/ap) € [0, 7/2] characterizing the relative
strength between the Rashba and Dresselhaus SOCs, and b =
(— sing, cosg) is a unit vector perpendicular to a. (b) Energy
spectrum of a nanowire quantum dot modeled by H, in Eq. (2),
where each energy level is twofold degenerate. This degeneracy
can be removed by applying a static magnetic field to the
nanowire quantum dot. Here the lowest two levels with splitting
Ey, are used to encode a spin-orbit qubit.

directly solving the Schrodinger equation [29-31].
Therefore, in order to have a good understanding of the
energy spectrum and the corresponding eigenstates of H,
one has to rely on a perturbative method. Here we intro-

duce two new parameters « and @: a@ = y/a} + a3, and
¢ = arctan(ag/ap), where ¢ € [0, 7/2]. With these new

parameters, the Hamiltonian (1) can be rewritten as

p2

H=H,+H, 5
m

H():

1 2,2 a
+ Emew x“+ ao’p,
¢ (2)
B
H, = ge%[cos(ﬂ — @)o* + sin(6 — @)o”],

with 0 = ¢ - o (¢ = a, b, n). Here the unit vectors a =
(cose, sing), b = (— sing, cose), and n =cos(6 — ¢)a +
sin(6@ — ¢)b are schematically illustrated in Fig. 1(a). In
previous theories [23-26], the SOC term was often con-
sidered as a perturbation, but this applies only for a weak

SOC, i.e., n = {m,/(hw)a < 1. Below, we consider the
case which is valid even in the strong SOC (i.e., large 1)
regime. Note that the Zeeman splitting g, ugB (~1 ueV)
is usually much less than the orbit splitting hw
(~ 1-10 meV). For instance, in an InSb nanowire quantum
dot, hw = 7.5 meV and g, = 40 [16], so the external
magnetic field can be as strong as B~ 0.1 T for & =
g.mpB/(hw) ~ 0.03. This field is much stronger than the
magnetic field usually used in experiments [9,16,22], so H;
can be treated as a perturbation.

To encode a spin-orbit qubit, we only need to focus on
the lowest two energy levels of H. Here we calculate the
energy-level spacing and the Hilbert-space structure of the
spin-orbit qubit by using the perturbative method for
degenerate states [32], where all derived results are accu-
rate up to first order in £.

The Hamiltonian H, in Eq. (2) can be diago-
nalized using a unitary transformation [33], i.e.,

ei(mea/h)xa“Hoe—i(mea/h)xu'” — pZ/(zme) + (1/2)7716(02)62_
m,a*/2. Let i,(x) be the eigenstates of a harmonic oscil-
lator corresponding to the eigenvalues (n + (1/2))hw,
where n =0, 1,2,.... Then, the eigenvalues of H, are
g, = (n+ (1/2)hw — (1/2)m,a?, and the corresponding
eigenstates are given by

|W,p) = e~ itmea/Mxyy (x)[1,),
|\Pnl> = ei(mea/h)xlpn(x)lla>! (3)

with [1,) = (v2/2)(e™ /% ¢/ and |l,) = (v2/2) X
(e7i¢/2, —¢i®/2)T  where T denotes the transpose of a
matrix, being two eigenstates of o“: o‘|1,) = |1,) and
oll,) = —|l,). The energy spectrum of H, is similar to
the energy spectrum of a harmonic oscillator, except that
each level g, is twofold degenerate, with the corresponding
degenerate eigenstates given by |W¥,;) and |¥,).

Our interest focuses on the » = 0 Hilbert subspace.
Usually, the two degenerate states |Wo;) and |Wy)) will
recombine in the zeroth-order wave functions, so we
calculate H; in the Hilbert subspace spanned by |W¥y)
and |Wy)):

H. = 8.MpB cos(f — ¢) ie" sin( — @)
1 — « —2 . *
2 —ie 7 sin(@ — @)  —cos(6 — @)
€]
Here we have used the formulas o”|1,) = —ill,) and
o’|l,y=ill,) in deriving the above matrix.

Diagonalizing this matrix, we obtain the eigenvalues and
the corresponding eigenfunctions

85, = T80 S, VF) = o5 Vo) + d5 [y, (5)
where
ot — cos(0 — @) = f
AL E feos(0 - @)
pra —ie " sin(f — ) (6)

V2= feos(0 — @)]

with f=f(n,0 — @) =[cos2(8 — @) + e 27 sin(6 — ¢)]'/2.
The wave functions |Wg) are actually the recombined
zeroth-order wave functions. The first-order wave
functions can be calculated using the perturbative
formula [32] [W5) = [W5) + 3, ) (W, |H,[¥5))/
(g9 — £,)|V,,). Therefore, we obtain

W5 = ¢ [Wor) + diy | W) + i(£/2)e™ " sin(6 — )

Z(\/_”?) [( 1)”

Here we have obtained the two lowest energy levels and the
corresponding wave functions | W ) of H by using degen-
erate perturbation theory, wh1ch are accurate up to first
order in £. The two states |V, ) and | W ) can be used to
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encode the spin-orbit qubit which has the level spacing
[see Fig. 1(b)]:

Eg = g.mpBycos?(0 — @) + e 2sin2(0 — ¢).  (8)

Clearly, it can be seen from Eq. (7) that the spin-orbit qubit
is different from the conventional spin qubit (which only
contains the n = 0 orbit state) because the spin-orbit qubit
combines many orbital states (n =0, 1, ..., ) with the
spin state. This orbital feature of the spin-orbit qubit leads
to an interesting phenomenon called EDSR, which can be
used to manipulate the spin-orbit qubit via an external ac
electric field. The spin-orbit qubit can be regarded as a
hybrid qubit which contains both the orbital and the spin
degrees of freedom of an electron in a quantum dot.
Therefore, the spin-orbit qubit can respond to both mag-
netic and electric fields.

Note that the results obtained so far are based on a 1D
harmonic quantm well for a single nanowire quantum dot.
Usually, the real well may include some anharmonicity
and the nanowire is quasi-1D. In this case, the problem
cannot be analytically solved, but the underlying physics
should be the same because the feature of well-separated
discrete orbital levels remains unchanged in the nanowire
quantum dot.

EDSR and its response to the magnetic-field direction.—
In EDSR, the SOC plays a key role [13-16,34-36], such
that an electron spin can respond to an ac electric field. In
previous studies, the SOC was treated as a perturbation,
and the EDSR effect has been investigated for a quantum-
well structure [23] and a 2D GaAs quantum dot [24,25].
Those results show that the Rabi frequency is linearly
proportional to the SOC strength 0 [24]. Below we will
show that this linear dependence of the Rabi frequency on
7 is due to the weak SOC.

When we apply an external ac electric field to the nano-
wire quantum dot, the total Hamiltonian becomes

H. = p2 +1 2,2 y X
ot — —m,w°x* + arc?’p + apo'p
2m, 2

B
n %gﬂ + eExcos(2mrt), ®)

where v is the frequency of the ac electric field. Based on
the results derived above, when we focus on the Hilbert
subspace of the spin-orbit qubit spanned by |W; ) and
I‘I’ap>, the Hamiltonian is reduced to a spin-orbit qubit
interacting with an ac electric field: Hy, = (1/2)Eg, 7% +
eEx cos(2mvt), where 77 = [W§ XW( | — |¥y XW¥; | In
this Hilbert subspace of the spin-orbit qubit, x has the
elements

(U W) = 0+ O)

Op

(o, 1xIW5,) = 0 + O(&?), (10
<‘I’Jp|x|‘1’5p> = —ixgéne " sin( — @) + O(&),

where xy = 4/i/(m,w). Thus, we conclude that H,, can be
reduced to the following EDSR Hamiltonian:

Hyoy = (1/2)Eq,7* + hQx 7Y cos2mvi), (11)

where

O = (S2)ene s -9l (2)
is the Rabi frequency, with & being the Planck constant,
and 7¥ = i(quap)(‘lfgp — I‘I’ng‘I’apl). When 7 is treated
as a perturbation for weak SOC (1 < 1), we can expand
Qg as Qg = (eExy/h)én|sin(6 — ¢)| + O(n?), so we
recover the previous result [24]. In fact, this EDSR
Hamiltonian is the Rabi-oscillation Hamiltonian in quan-
tum optics [37]. Therefore, the physics of EDSR is trans-
parent: when the driving frequency is in resonance to the
level spacing of the spin-orbit qubit (hv = E,), the spin-
orbit qubit can be flipped from one basis state to another
via the Rabi oscillation. Note that the Rabi frequency () is
obtained by only considering the lowest two levels of the
quantum dot. As we show in [38], when the resonant
condition is satisfied (hv = Eg,) and the driving electric

field is weak (E < how/ \/Eexo), the influence of other
energy levels is negligible.

In experiments, the EDSR was probed using a double
quantum dot, where the double quantum dot was initially
tuned in the Pauli spin blockade regime [9,11,14,16]. If and
only if an electron spin in either dot is flipped via EDSR,
the current can flow through the dot. Here we emphasize
that for a nanowire quantum dot with strong SOC, the
electron spin in the dot becomes a pseudospin (a spin-orbit
qubit). Because the current through the dot depends on the
states of the spin-orbit qubit, the flipping of this pseudospin
can also be monitored by either the current through the dot
[9,11,16] or a nearby quantum point contact [14].

Note that the SOC strength 7 is not treated as a pertur-
bation in our theory, so our results apply in the strong SOC
regime. First, the level spacing Eg, given in Eq. (8)
depends on the direction 6 of B. If 5 is treated as a
perturbation as for a weak SOC, the level spacing is just
the Zeeman splitting g, upB. Thus, the dependence of Eg,
on the magnetic-field direction is a signature of strong SOC
in the nanowire. This directional dependence was demon-
strated in a recent experiment on an InSb nanowire quan-
tum dot [16]. Second, the Rabi frequency {1 given in
Eq. (12) is not linearly proportional to the SOC strength
7. Instead, there is an optimal SOC strength 14, = V2/2,
where the Rabi frequency reaches its maximum value (see
Fig. 2). Our results imply that, in order to achieve the
strongest Rabi frequency, it is not necessary to find mate-
rials with extremely strong SOC, but to find a material with
an optimal SOC strength 7. This optimal material gives
the smallest manipulation time (! for the state flipping of
a spin-orbit qubit.
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FIG. 2 (color online). Rabi frequency (in units of )j) versus
the SOC strength 7, where )y = (eEx,/h)&| sin(@ — ¢)|. There
is an optimal SOC strength 74, = \/5/2 =~ (.707, where the
Rabi frequency becomes maximal. After this optimal point 7y,
increasing SOC reduces the Rabi frequency.

The determination of the SOC is an important goal [39].
Because both level spacing and Rabi frequency of the spin-
orbit qubit depend on the direction of B, we can use these
responses to determine both the Rashba and Dresselhaus
SOC strengths, ap and «p, in the nanowire. Figure 3
shows the dependence of both the level splitting and the
Rabi frequency on the magnetic-field direction for
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FIG. 3 (color online). (a) Periodic response of the level spac-
ing Eg, (in units of g,upB) of the spin-orbit qubit on the
direction @ of the external static magnetic field B. (b) Periodic
response of the Rabi frequency ; (in units of {)) on the
direction @ of B, where Q0 = (eExy/h)éne ™. The parameter
¢ = arctan(ay/ap) characterizes the relative strength between
the Rashba and Dresselhaus SOCs in the nanowire. For example,
¢ = 0 corresponds to a nanowire with pure Dresselhaus SOC
(agp = 0), ¢ = 7/2 corresponds to a nanowire with pure Rashba
SOC (ap = 0), and ¢ = 7/4 corresponds to a nanowire with
equal Rashba and Dresselhaus SOCs (ap = ap).

different values of ¢ = arctan(ag/a). Because the level
splitting E, oscillates between e~ and 1 [see Fig. 3(a)],
we can determine the SOC strength 7 from the minimal
amplitude e~ ™. Moreover, by monitoring how the level
splitting Eg, and the Rabi frequency () vary with the
direction # of B, we can determine the parameter ¢. For
example, the level spacing Ey, in Eq. (8) reaches its
maximum values at O, = *lm+¢ ((=01,2,...)
[see Fig. 3(a)], and the Rabi frequency Qj in Eq. (12)
reaches its maximum values at 6,,,, = * (21 + 1)7/2 + ¢
(l=0,1,2,...)[see Fig. 3(b)]. Thus, ¢ can be determined
from the values of 4,,,,. To obtain o, = a cosg and ap =

a sing, where @ = ny/hw/m,, we should know the orbit-
level spacing hw. Actually, hw is controlled by the gate
voltages on the static electric gates which are used to form
the trap potential (1/2)m,w?*x>. We take a recent experi-
ment as an example. By comparing Fig. 3(a) with Fig. 2(c)
in [16], we obtain e~ 7 = 15/20 and 6,,,, =~ 0.227 at
[ =0 from the experimental data. Thus, we have n =
0.54 and ¢ = 0, = 0.227 (40°) for the nanowire mate-
rial. Also, this value of 1 = 0.54 reveals that the nanowire
material used in [16] has a strong SOC.

Discussions and conclusions.—The EDSR that we con-
sidered is only induced by the SOC in the quantum dot.
Actually, the hyperfine interaction between the electron
spin and the lattice nuclear spins in the dot can also induce
interesting phenomena such as hyperfine-mediated EDSR
[14,25,40] and the spin-resonance locking [41]. In some
materials, the electron g, factor may have strong anisot-
ropy. When the static magnetic field rotates, this strong
anisotropy might also give rise to appreciable directional
oscillations of the level spacing E,,. However, it does not
yield directional oscillations to the Rabi frequency because
g. is not included in . Thus, one can use the Rabi
frequency to demonstrate the directional oscillations in-
duced by the SOC. As to directly showing the SOC-
induced directional oscillations in Eg, one can use
materials with a weak anisotropy in the g, factor.

In conclusion, we have theoretically investigated the
EDSR effect in a semiconductor nanowire quantum dot
with strong SOC. In contrast to the previous theories
developed in the weak-SOC regime, our results demon-
strate that there is an optimal SOC strength 74, = V2/2
where the Rabi frequency induced by the external ac
electric field is maximal. Also, we show that both the level
spacing and the Rabi frequency of the spin-orbit qubit have
periodic responses to the direction of the external static
magnetic field. These responses can be used to probe the
SOC in the nanowire by determining both the Rashba and
the Dresselhaus SOC strengths in the material.
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