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We predict by first-principles calculations that thin films of a Cr-doped ðBi; SbÞ2Te3 magnetic

topological insulator have gapless nonchiral edge states coexisting with the chiral edge state. Such

gapless nonchiral states are not immune to backscattering, which would explain dissipative transport in

the quantum anomalous Hall (QAH) state observed in this system experimentally. Here, we study the edge

transport with both chiral and nonchiral states by the Landauer-Büttiker formalism and find that the

longitudinal resistance is nonzero, whereas Hall resistance is quantized to h=e2. In particular, the

longitudinal resistance can be greatly reduced by adding an extra floating probe even if it is not used,

while the Hall resistance remains at the quantized value. We propose several transport experiments to

detect the dissipative nonchiral edge channels. These results will facilitate the realization of pure

dissipationless transport of QAH states in magnetic topological insulators.
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Introduction.—The recent theoretical prediction and ex-
perimental realization [1–6] of the quantum anomalous
Hall (QAH) effect have generated intense interest in this
new state of quantum matter. The QAH insulator has a
topologically nontrivial electronic structure characterized
by a bulk energy gap but gapless chiral edge states, leading
to the quantized Hall effect without an external magnetic
field [7]. In the quantum Hall effect (QHE), electronic
states of a two-dimensional (2D) electron system form
Landau levels under a strong external magnetic field, and
the Hall resistance is accurately quantized into h=�e2

plateaus [8,9] accompanied by exact zero longitudinal
resistance and conductance in the plateaus (here, h is
Plank’s constant, e is the charge of an electron, and � is
an integer or a certain fraction). The exact quantization of
the Hall resistance arises from dissipationless chiral states
localized at sample edges [10], along which electric cur-
rents flow unidirectionally and backscattering cannot take
place [11]. In a QAH insulator, theoretically predicted in
magnetic topological insulators (TIs) [1–5], the spin-orbit
coupling (SOC) and ferromagnetic ordering combine to
give rise to a topologically nontrivial phase characterized
by a finite Chern number [12] and chiral edge states
characteristic of the QAH state. The QAH effect has
been experimentally observed in thin films of Cr-doped
ðBi;SbÞ2Te3 magnetic TIs [6], where at zero magnetic
field, the gate-tuned Hall resistance (�xy) exhibits a plateau

with quantized value h=e2 while the longitudinal resistance
(�xx) shows a dip down to 0:098h=e2. This quantized
value of �xy is consistent with quantum transport due

to a single chiral edge state. However, nonzero �xx indi-
cates that the system has other dissipative conduction
channels. Thus, it is important to be able to trace where
such dissipation comes from and to realize experimentally
a pure dissipationless transport of QAH states in magnetic
TIs [13].

In this Letter, based on first-principles calculations, we
show that five quintuple layers (QLs) of CrxðBi; SbÞ2�xTe3
studied in the experiment [6] have gapless nonchiral edge
states coexisting with a chiral edge state. Such gapless
nonchiral states are not immune to backscattering, which
would explain dissipative transport of the recent QAH
experiment [6]. Here, we study the edge transport with
both chiral and nonchiral states by the Landauer-Büttiker
formula and find that �xx exhibits non-Ohmic behavior.
Remarkably, �xx is nonzero, whereas �xy is quantized into

h=e2. In particular, �xx can be greatly reduced by the mere
presence of a floating probe even if it is not used, while �xy

remains at the quantized value. The nonchiral edge
channels can be detected through nonlocal transport mea-
surements. We also predict that thinner films of Cr-doped
ðBi; SbÞ2Te3 are a QAH insulator with a single chiral edge
state, in which pure dissipationless transport of QAH states
can be realized.
Materials.—We study the Cr-doped ðBi0:1Sb0:9Þ2Te3

magnetic TI, where the Dirac cone of the surface states
is observed to be located in the bulk band gap [6,14].
Here, we carry out first-principles calculations on three-
dimensional ðBi0:1Sb0:9Þ2Te3 without SOC, where the
virtual crystal approximation is employed to simulate the
mixing between Bi and Sb. Then, we construct the tight-
binding model with SOC and the exchange interaction
based on maximally localized Wannier functions [15,16].
The effective SOC parameter of CrxðBi0:1Sb0:9Þ2�x is
obtained by linear interpolation between the SOC strength
of Bi and Sb, where the reduced SOC strength resulting
from the Cr substitution of (Bi, Sb) has been taken into
account [17]. When the 2D system stays in the QAH phase,
there must be chiral edge states if an edge is created. Here,
we study the edge states of CrxðBi; SbÞ2�xTe3 thin films
along the edge A direction, as shown in Fig. 1. For a semi-
infinite system, combining the tight-binding model with
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the iterative method [18], we can calculate the Green’s
function for the edge states directly. The local density
of states is related to the imaginary part of the Green’s
function, from which we obtain the dispersion of edge
states (see the Supplemental Material [19]). As shown in
Fig. 1(b) for five QLsCr0:15ðBi0:1Sb0:9Þ1:85Te3, there indeed
exists one chiral edge state �1 indicating the � ¼ 1 QAH
state. There are also other trivial edge states, but most of
them only connect to the conduction or valence bands.
Remarkably, one pair of these trivial edge states �1 is
gapless, which connects the conduction and valence bands.

�1 can be dubbed as the quasihelical edge states. It
originates from helical edge states of the quantum spin
Hall (QSH) effect but with time-reversal symmetry (TRS)
breaking due to spontaneous magnetic moments, where the
gap is opened at the Dirac point and buried into valence
bands by particle-hole asymmetry. It is nonchiral, with two
counterpropagating channels, but not immune to backscat-
tering due to TRS breaking. Such coexistence of chiral and
quasihelical edge states is quite general in magnetic TIs,
especially in thick films. These quasihelical states do not
change the topological property of the system; however,
they contribute to the dissipative edge transport and can be
used to explain nonzero �xx when �xy is quantized in the

QAH experiment [6].

Edge transport.—To demonstrate the existence of pre-
dicted extended nonchiral edge channels in magnetic TIs,
we study the edge transport with both chiral and nonchiral
states by the Landauer-Büttiker formalism [20,21]. The
general relationship between current and voltage is
expressed as

Ii ¼ e2

h

X

j

ðTjiVi � TijVjÞ; (1)

where Vi is the voltage on the ith electrode, Ii is the current
flowing out of the ith electrode into the sample, and Tji is

the transmission probability from the ith to the jth elec-
trodes. There is no net current (Ij ¼ 0) on a voltage lead or

floating probe j, and the total current is conserved, namely,P
iIi ¼ 0. The current is zero when all the potentials are

equal, implying the sum rules
P

iTji ¼ P
iTij.

For a standard Hall bar with N current and voltage
leads [such as Fig. 2(a) with N ¼ 6], the transmission
matrix elements for the chiral state of the � ¼ 1 QAH
effect are given by Tiþ1;i ¼ 1, for i ¼ 1; . . . ;N , and

others ¼ 0. (Here, we identify i ¼ N þ 1 with i ¼ 1.)
For quasihelical states, Tiþ1;i ¼ k1, Ti;iþ1 ¼ k2, and

others ¼ 0. These states are not protected from backscat-
tering, and the transmission from one electrode to the next
is not perfect, implying k1, k2 < 1, which is different from
helical edge states in the QSH effect where k1 ¼ k2 ¼ 1
[22]. For simplicity, we have assumed Tij to be transla-

tional invariant, namely, Tij ¼ Tiþ1;jþ1. In general, k1 and

k2 become zero for an infinitely large sample because
either dissipation occurs once the phase coherence is
destroyed in the metallic leads or the momentum is relaxed
when the sample size L � the mean free path lm [k1, k2 �
lm=ðlm þ LÞ]. By contrast, the QAH chiral edge states are

(a) (b)

(c) (d)

FIG. 1 (color online). Band structures for five QLs and three
QLs Cr0:15ðBi0:1Sb0:9Þ1:85Te3 without an exchange field are plot-
ted in (a) and (c), respectively. The dashed line indicates the
Fermi level. The inset of (a) shows the 2D Brillouin zone with
high-symmetry k points �ð0; 0Þ, Kð�;�Þ, and Mð�; 0Þ labeled,
and that of (c) is the top view of a 2D thin film with two in-plane
lattice vectors a1 and a2. The 1D edges are indicated by the
dashed lines, edge A and edge B. The energy dispersion of a thin
film along edge A is plotted for (b) five QLs with exchange field
0.02 eVand (d) three QLs with exchange field 0.05 eV. Here, the
warmer colors (lighter gray in gray scale) represent the higher
local density of states, with red (light gray) and blue (dark gray)
regions indicating 2D bulk energy bands and energy gaps,
respectively. The gapless edge states can be clearly seen around
the � point as red (light gray) lines dispersing in the 2D bulk gap.
One gapless chiral edge state �1 and one pair of gapless
quasihelical edge states �1 coexist in (b), while only one gapless
chiral edge state �1 exists in (d).

FIG. 2 (color online). Hall bridge and transport properties.
(a) Schematic drawing of a Hall bar device with both quasihel-
ical edge channels (dashed lines) and a chiral edge channel (solid
lines). The current is from terminals 1 to 4; voltage leads are on
electrodes 2, 3, 5, and 6. (b) Voltage at terminals 1–6 for
transport of the chiral, helical, and chiral and quasihelical edge
states. The transport with both chiral and quasihelical edge
channels (solid lines) show non-Ohmic behaviors of �xx.
(c) �xx and �xy vs r with different numbers of effective voltage

leads on each side of the sample.
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robust against phase decoherence. Thus, the nonzero total
transmission matrix elements are

Tiþ1;i ¼ 1þ k1; Ti;iþ1 ¼ k2: (2)

In the case of current leads on electrodes 1 and 4 and
voltage leads on electrodes 2, 3, 5, and 6, as shown in
Fig. 2(a), one finds that I1 ¼ �I4 � I, and the voltage
from 1, 2, 3, to 4 increases exponentially, whereas the
voltage from 4, 5, 6, to 1 decreases exponentially

Vj ¼ 1� rj�1

1� r3
V; 1 � j � 4; (3)

Vj ¼ 1� rj�7

1� r�3
V; 4 � j � 6: (4)

Here, we set V1 � 0 and V4 � V, and r � k2=ð1þ k1Þ. If
k1 ¼ k2 ¼ 0, which is the case for chiral edge state trans-
port in the QAH effect and QHE, V2 ¼ V3 ¼ V ¼ ðh=e2ÞI
and V5 ¼ V6 ¼ 0, so that �xy � ðV2 � V6Þ=I ¼ h=e2 and

�xx � ðV3 � V2Þ=I ¼ 0 as expected [shown in Fig. 2(b)].
For the helical edge state transport in the QSH effect
with Tiþ1;i ¼ Ti;iþ1 ¼ 1, V2 ¼ V6 ¼ V=3 ¼ ðh=2e2ÞI,
and V3 ¼ V5 ¼ 2V=3, and thus R14;14 � ðV4 � V1Þ=I ¼
3h=2e2 and R14;23 � ðV3 � V2Þ=I ¼ h=2e2 [22]. For the

edge transport with both chiral and quasihelical states, the
voltages of different leads are plotted in Fig. 2(b), where
�xx does not scale linearly with the spacing between the
voltage leads in accordance with Ohm’s law. Moreover, �xx

is nonzero, while �xy is nearly quantized. This is the key

result of this Letter. The sample size in experiment is
>200 �m, which is much larger than phase coherence
length l� < 1 �m in this material with a rather low mo-

bility (< 800 cm2=Vs) [6,23]. The effect of decoherence
between two real leads can be modeled as an extra floating
lead, in which quasihelical states interact with infinitely
many low-energy degrees of freedom, completely losing
their phase coherence [22]. Thus, the standard Hall bar
withN ¼ 6 current and voltage leads [shown in Fig. 2(a)]
used in experiment has effectively n ¼ 5 voltage leads on
each side. As shown explicitly in Fig. 2(c), for a certain
parameter range of r, �xy can be quantized to a h=e2

plateau, whereas �xx is nonzero. This explains the dissipa-
tive longitudinal transport of the QAH effect observed in
magnetic TIs recently [6].

In the presence of a strong external magnetic field B, the
backscattering of quasihelical edge states is enhanced
due to breaking of the TRS, while the chiral edge state is
robust against backscattering. When the magnetic length

lB < lm (lB � ffiffiffiffiffiffiffiffiffiffiffi
@=eB

p � 10 nm at 10 T), similar to the one-
dimensional antilocalization, the enhanced backscattering
makes both k1 and k2 approaching zero, and thus �xx

decreases as B increases [6]. In an even higher magnetic
field, the transition to an ordinary quantum Hall state
takes place. The quasihelical edge states disappear with
k1 ¼ k2 ¼ 0; only the chiral state of the QHE survives;

therefore, �xx vanishes completely in a high magnetic
field. This scenario is consistent with the experimental
observations [6].
In reality, voltage leads may not be correctly aligned

experimentally, as illustrated in Fig. 3(a), where the current
leads are on electrodes 1 and 4. Suppose electrodes 2 and 60
are voltage leads in experiment, while position 6 is the
symmetric point (mirror) of 2. The voltage of leads in
this Hall bar is plotted in Fig. 3(b). The solid line and
dashed line denote the voltages of leads when magnetiza-
tion M is up ( " ) and down ( # ), respectively. If the leads
are symmetric,

�xyð"Þ ¼ V"
2 � V"

6

I
¼ �V#

2 � V#
6

I
¼ ��xyð#Þ � �0:

If the leads are not symmetric, namely, 6 is moved to 60,
effectively, such misalignment of leads will cause V60 to be
higher than V6 independent of magnetization. So, the Hall
resistance �0

xy measured between 2 and 60 will gain a

fraction of the longitudinal resistance

�0
xyð"Þ ¼ �0 �

V"
60 � V"

6

I
¼ �0 � ��ð"Þ; (5)

FIG. 3 (color online). Six-terminal Hall and nonlocal measure-
ments. (a) Standard Hall measurement with six terminals and
(b) corresponding voltages. The current is through 1 to 4, and the
Hall voltage is measured between 2 and 6. Terminal 6 (denoted
as 60) is not be symmetric to terminal 2 due to misalignment,
so the Hall signal may contain some longitudinal component.
(c) Nonlocal measurement and (d) voltage. The current is
through 1 to 2. In (b) and (d), the voltages with downward and
upward magnetic orderings are denoted as solid red and dashed
blue lines, respectively.
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�0
xyð#Þ ¼ ��0 �

V#
60 � V#

6

I
¼ ��0 � ��ð#Þ: (6)

Thus,�0
xyð"Þ���0

xyð#Þ. To the lowest order,��ð"Þ���ð#Þ,
and one can antisymmetrize the Hall resistance to eliminate
the effect of asymmetric leads

�xy ¼
�0
xyð"Þ � �0

xyð#Þ
2

: (7)

For a well quantized �xy, one of �0
xyð"Þ and �0

xyð#Þ will

be larger than h=e2, while the other will be smaller.
This is exactly the phenomenon observed in the QAH
experiment [6]. It is worth mentioning that in this system,
��ð"Þ � ��ð#Þ, so this antisymmetrization process does
not cancel the asymmetry effect completely.

Nonlocal transport.—The dissipative transport mea-
sured in the standard Hall bar does not allow us to distin-
guish experimentally between quasihelical edge channels
and residual bulk conduction channels in a convincing
manner. An unambiguous way to prove the existence of
quasihelical edge state transport in the QAH experiment is
to use nonlocal electrical measurements. The edge states
necessarily lead to nonlocal transport, and such nonlocal
transport has been experimentally observed in the QHE
[20,24], which provides definitive evidence for the exis-
tence of chiral edge states in the QHE.

As shown in Figs. 3(c) and 3(d), a current is passed
through probes 1 and 2 and voltage is measured between
probes 4 and 5 away from the dissipative bulk current path.
For chiral edge state transport, the voltage signal tends to
zero. However, for the transport of quasihelical edge states,
V4 � V5 � 0, which gives a nonlocal resistance signal
R12;45=�xx � 0:1 (around 220 �). Here, �xx is the longi-

tudinal resistance measured by current flowing through 1 to
4 and the voltage between 2 and 3. The classical Ohmic
bulk contribution to the nonlocal (NL) effect is given by
Rclassical

NL =�xx � expð��‘=wÞ, where ‘ is the distance
between the voltage probes and w is the strip width [25].
For the geometry with ‘=w ¼ 2, we estimate
Rclassical

NL =�xx � 10�3 (5 �). Therefore, one would only
expect a minimal signal from a conducting bulk.
Different from bulk conduction, the quasihelical edge
states are fully nonlocal, and this signature can be taken
as strong evidence for the existence of quasihelical edge
channel transport in the QAH experiment. One can further
measure the voltage between electrodes 3 and 4, and also
that between 5 and 6. Quantitatively, for edge transport,
ðV3 � V4Þ=ðV4 � V5Þ ¼ ðV4 � V5Þ=ðV5 � V6Þ, which can
further verify the extra dissipative edge channels in mag-
netic TIs. A similar nonlocal voltage can also be studied in
a different geometry, for example, in the shape of the letter
H, as shown in Fig. 4(c). The current leads on 1 and 4, and
the voltage leads on 2 and 3.

Another transport measurement that could directly con-
firm the existence of quasihelical edge channels is shown

in Fig. 4(a), where extra floating probes 20 and 60 are added
to the standard Hall bar [26]. For the � ¼ 1 QAH effect in
magnetic TIs, such extra floating leads at sample edges
will not affect the transport of residual bulk conduction
channels, if there are any. It also will not affect the chiral
edge channel transport. However, it will establish an equi-
librium between the two counterpropagating channels of
the quasihelical edge states and changes �xx and �xy. By

adding more extra floating probes, �xx approaches 0 and
�xy is more accurately quantized into h=e2, as illustrated in

Fig. 4(b). This is a rather sharp feature which is easy to
implement in experiments.
Finally, we discuss the Corbino geometry [11] for the

QAH effect. The theory proposed here would predict that
the current flows from the inner to the outer rings of the
Corbino disk would be zero, since there are no bulk car-
riers. The quasihelical edge states do not contribute to the
currents in the Corbino disk. Therefore, the quantization of
Hall resistance is exact.
In summary, the coexistence of chiral and quasihelical

edge channels in magnetic TIs can explain the dissipative
longitudinal transport of the recent QAH experiment. Such
quasihelical edge states can be detected by nonlocal trans-
port measurements. In fact, thinner films of magnetic TIs
such as three QLs Cr0:15ðBi0:1Sb0:9Þ1:85Te3 are QAH insu-
lators with a single chiral edge state as shown in Fig. 1(d).
There is no gapless trivial edge state in this system, and one
can realize the completely dissipationless transport of
QAH states.
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FIG. 4 (color online). Transport measurements with different
numbers of terminals and device geometry. (a) Standard Hall
measurement with extra floating terminals 20 and 60 inserted at
the edges. I, 1–4; Vxy, 2–6; and Vxx, 2–3. (b) The voltage at

terminals 1–6 of (a) in the presence of extra floating probes. n
denotes the total numbers of voltage probes on one side. The
dashed line denotes the chiral edge state transport, which is not
affected by extra floating probes. (c) Nonlocal four-terminal
resistance and two-terminal resistance measurements on the
H-bar device.
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