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Electronic states at the ends of a narrow armchair nanoribbon give rise to a pair of nonlocally entangled

spins. We propose two experiments to probe these magnetic states, based on magnetometry and tunneling

spectroscopy, in which correlation effects lead to a striking, nonlinear response to external magnetic fields.

On the basis of low-energy theories that we derive here, it is remarkably simple to assess these nonlinear

signatures for magnetic edge states. The effective theories are especially suitable in parameter regimes

where other methods such as quantum Monte Carlo simulations are exceedingly difficult due to

exponentially small energy scales. The armchair ribbon setup discussed here provides a promisingly

well-controlled (both experimentally and theoretically) environment for studying the principles behind

edge magnetism in graphene-based nanostructures.
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Graphene [1], a two-dimensional network of carbon
atoms, has induced much excitement among physicists
because of a multitude of unusual electronic properties
[2]. Much of the literature about graphene has focussed
on noninteracting electrons moving on a honeycomb
lattice, though. One reason for this is that free electrons
already show unorthodox effects such as Klein tunneling
[3,4] and an anomalous quantum Hall sequence even at
room temperature [5]. Another reason is that the influence
of short-ranged electron-electron interactions is considered
to be weak because of the vanishing density of states at the
charge-neutrality point [6].

At graphene edges the density of states may be peaked
due to the presence of edge-localized states close to the
Fermi level [8]. Especially at extended zigzag edges this
leads to a phenomenon called edge magnetism, where vari-
ous theories predict ferromagnetic intraedge and antiferro-
magnetic interedge correlations [9–18]. Experimentally,
these magnetic correlation effects prove to be elusive.
Only recently, experimental indications of the importance
of electron-electron interactions at edges of chiral graphene
nanoribbons have been reported [19]. The actual magnetic
properties, however, remain unresolved experimentally as
yet. The most severe issues hampering the experimental
study of edge magnetism are (a) uncontrolled and rough
edges [20], (b) hybridization with the substrate [21], and
(c) unclear experimental signatures of edge magnetism.
All these issues are in fact related to the high complexity of
the edges of most graphene nanoribbons: On the one hand
the exact structural properties of the ribbon edges are not
known. On the other hand, theory has not yet provided clear
experimentally resolvable signatures beyond mean-field
band structures.

Here, we propose to study electronic correlation effects
in a simpler geometry, namely in short armchair nano-
ribbons with zigzag ends (see Fig. 1). This geometry

resolves at least issues (a) and (c). The basic principles of
edge magnetism become strikingly clear in those ribbons,
since, compared to edge magnetism in large zigzag or chiral
ribbons, they offer three key advantages: (i) suitable high-
quality armchair ribbons are already available [22–24]; (ii) as
we will show, armchair ribbons are well under control theo-
retically as they allow for essentially exact solutions without
the need to resort to mean-field techniques; (iii) correlation
effects are accessible by means of magnetometry and spin-
resolved scanning tunneling spectroscopy (STS).
Model and geometry.—Our analysis is based on the

�-band model of graphene. It is convenient for our pur-
poses to separate the Hamiltonian H ¼ H0 þHU þH0
into a dominant part

H0 þHU ¼ �t
X
hi;ji;�

cyi�cj� þU
X
i

cyi"ci"c
y
i#ci#; (1)

where � is a spin label, t � 3 eV is the nearest-neighbor
hopping amplitude and U � 6 eV the on-site Hubbard
repulsion. H0 contains additional terms such as more
distant neighbor hopping and the long-range part of the
Coulomb repulsion. We will show that H0 þHU governs
the physics, while H0 only renormalizes the effective para-
meters. The lattice geometry that we consider is charac-
terized by the number of hexagons in the zigzag direction,
W, and the number of hexagons in the armchair direction,
L (see Fig. 1). High quality nanoribbons with W ¼ 3 have
recently been synthesized in a bottom-up approach in the
laboratory [22–24]. They have been shown to be termi-
nated by single hydrogen atoms [22], so that a�-band-only
model is well justified.
Effective low-energy theory.—Following Ref. [25] we

derive a fermionic theory for the low-energy sector of a
W ¼ 3 ribbon. The relevant degrees of freedom are selected
on the basis of their localization properties. The eigenstates

ofH0 are separated into bulk states b
y
�� ¼ P

i��ðiÞcyi� with
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P
ij��ðiÞj4 � 1=L, and end states ey�� ¼

P
ic�ðiÞcyi� withP

ijc�ðiÞj4 � const for large L. The latter are symmetric
and antisymmetric superpositions of exponentially local-

ized states eyL=R;� at the left (L) and right (R) end of the

ribbon. Typical end state wave functions are shown in

Fig. 1. We reconstruct the states eyL=R;� from the low-energy

eigenstates ey�;� ofH0. The energies of the end states �þ ¼
��� are exponentially small in L while we find that the
bulk energies for Eq. (1) satisfy j��j * 0:23t. Thus, the end

states are energetically well separated from the bulk states.
From the end state wave functions c L=RðiÞ we construct a
fermionic low-energy theory

Hf ¼ �t�
X
�

ðeyL�eR� þ H:c:Þ � X
�;�0;s¼L;R

eys�ðB � �=2Þ��0es�0

þU� X
s¼L;R

ðeys"es" � 1=2Þðeys#es# � 1=2Þ; (2)

where t� ¼ j��j describes an effective hopping of electrons
from one end to the other, U� ¼ U

P
ijc LðiÞj4 ¼

U
P

ijc RðiÞj4 � 0:1U is an effective Hubbard repulsion
for the end-localized electrons, � the vector of Pauli
matrices, and B the magnetic field. We assume a g factor
of 2. In Ref. [26] it was shown that the g factor can even be
larger, so our estimates are conservative.

It is important to note, that U� is essentially independent
of L while t� becomes exponentially small for large L.

By fitting the numerical data we find t� � e�L=1:861:29 eV.
Thus, for not too small L a further reduction of Hf to a
two-spin Heisenberg model

HH ¼ JHSL �SR�B � ðSLþSRÞ; JH ¼ 4ðt�Þ2=U� (3)

is feasible. Here, SL=R are spin-1=2 operators describing

the spins of the localized electrons at the left/right end.
This simple Heisenberg theory describes two antiferro-
magnetically coupled spins, localized at the ribbon ends,
with a singlet-triplet (ST) splitting JH > 0.

Assessing the effective theory.—In order to scrutinize
the effective low-energy theories (2) and (3), we perform
numerically exact projective auxiliary-field determi-
nant quantum Monte Carlo (QMC) simulations of the full

lattice model ~H ¼ H0 þHU. Ground-state averages of arbi-

trary observables Ô, such as the energy or the Green’s

function, are calculated by hÔi ¼ hc Tje�� ~HÔe�� ~Hjc Ti=
hc Tje�2� ~Hjc Ti. The projection length � ¼ 120=t is chosen
sufficiently large as to ensure convergence. jc Ti is taken as
the ground state of the noninteracting system with a fixed
number of spin-� electrons N�. We employ a third-order
Trotter-Suzuki decomposition with a propagation step size
of �� ¼ 0:01=t. For further details on the QMC algorithm
cf. Ref. [27].
Because of the SU(2) symmetry, the single scale in the

low-energy sector is the ST splitting, J, which we calculate
in three different ways. (i) In the fermionic theory we find

Jf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðU�Þ2=4þ 4ðt�Þ2p �U�=2. (ii) In the Heisenberg

theory JH is given by Eq. (3). (iii) Within QMC simulations
we calculate the difference Jexact of the total ground-state
energies for N" ¼ N# þ 2 (triplet sector) and N" ¼ N# (sin-
glet sector). Figure 2 compares these three results for
U=t ¼ 0:5 and 1.0. While Jf agrees very well with the
exact solution, JH deviates significantly for very short
ribbons, where t�=U� is not yet small. Because of the
exponentially small ST splitting, the QMC calculations
were feasible only on relatively short ribbons L & 8.
In this regime, the fermionic theory agrees with the exact
QMC results within error bounds. The effective theory,
however, is not restricted to such small L. We conclude
from Fig. 2, that for L * 8 the simple Heisenberg theory
(3) may be used to describe the spin physics.
Detection via magnetometry.—The exponential depen-

dence of J on L in combination with the discreteness of L
enables an experimental detection of the interend spin
correlation by means of magnetization measurements.
Note that L must be even because of the synthesis process
[24]. We assume an ensemble ofW ¼ 3 ribbons of variable
and homogeneously distributed sizes L ¼ 8; 10; . . . ; 20
(corresponding to lengths between 4 and 8 nm), arranged
randomly and sparsely on a 2D surface. Other length

FIG. 2 (color online). Singlet-triplet splitting J as a function of
ribbon length L. The blue dotted line is Jf calculated from Hf

[Eq. (2)]. The red solid line corresponds to JH [Eq. (3)]. The
black circles with error bars are the results of the QMC simu-
lations Jexact. (a) is with U ¼ 0:5t and (b) with U ¼ t.

FIG. 1 (color online). Lattice geometry of an armchair nano-
ribbon with W ¼ 3 hexagons in zigzag direction and L ¼ 10
hexagons in armchair direction. On top of the lattice the weight
of the edge-localized low-energy states jc LðiÞj2 þ jc RðiÞj2 is
shown. Both the dot size and color scales with the weight. The
blue circle indicates a typical site at which the spectral function
is to be measured (see text).
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distributions can be accounted for easily. The surface of the
largest ribbon is about 6 nm2. Even if less than 1=10 of
the substrate is covered by ribbons, 2� 104 ribbons per
�m2 are possible. In Fig. 3 we show the total magnetic
moment of an ensemble of 3000 ribbons for each length
L ¼ 8; 10; . . . ; 20. At low temperatures one can see a clear
nonlinear response signature with steps of height 6000 �B.
The spacing of the critical field strengths of the different
steps corresponds roughly to 1 order of magnitude in the
magnetic field. This nonlinear response signature is
observable with cutting-edge experimental magnetometry
techniques [28].

Spin-polarized STS.—A complementary method for
detecting the spin correlations is spin-polarized STS,
which measures the spin-resolved local spectral function

Ai�ð!Þ ¼ 1

Z

X
m;n

jhmjcyi�jnij2

� ½e��En þ e��Em��	ð!� ðEm � EnÞÞ: (4)

Here, jni are manybody eigenstates of H with energy En.
Although the usual definition of the spectral function
involves Dirac delta functions, we use the Gaussian
�	ðxÞ with finite width 	. This accounts for a finite ex-

perimental energy resolution of the spectral function due to
finite lifetimes or due to the temperature of the electrons
and holes tunneling from the STM tip into the system. Note
that this temperature 	 is not necessarily equal to the
ribbon temperature ��1 in a nonequilibrium situation.
For i we choose a site at the ribbon edge, where one of
the edge state wave functions is large (see Fig. 1). Here we
opt for the site i on the left.

The lattice electron operator ci� may be expressed in
edge and bulk states. But since we are only interested in

small energies ! we may drop the bulk states and obtain
Ai�ð!Þ ¼ jc LðiÞj2AL�, where AL�ð!Þ is of the same form
as Eq. (4), with the ci� operator replaced by eL�. We have
assumed that i is on the left end of the ribbon. We calculate
the spectral function within the fermionic effective theory
[Eq. (2)] by exact diagonalization. The resulting exact
spectral function AL#ð!Þ in dependence on the external

magnetic field B is shown in Fig. 4. The large energy
features provide a clear distinction between a singlet phase
for jBj< Bc and two triplet phases for jBj> Bc. For a
better understanding of these large energy features we
evaluate AL�ð!Þ approximately for U� 	 B, T, t� and find

AL�ð!Þ¼1

2

X
�0
�	

�
!þ�0

U�

2

�
1þe�Jþ2e2��

0�B

1þe�Jþ2coshð2�BÞ : (5)

This approximate formula only holds for ! resolutions 	
coarser than the energy scales J, t�. It shows that for jBj<
Bc ¼ J=2 it is possible to add a spin-down electron with
energy U�=2 and to remove a spin-down electron with
energy �U�=2, because the singlet phase is a coherent
superposition of a state with an up spin and a state with a
down spin on the left side. As B> Bc ¼ J=2 the triplet

state eyL"e
y
R"j0i becomes the ground state, where it is only

possible to add a down spin electron but not to remove one.
This is reflected by all the spectral weight being at positive
!. We also calculated the exact spectral function by QMC
calculations (not shown in Fig. 4) and found that, within
the statistical bounds achievable in QMC calculations, it
agrees with Eq. (5) in the low-energy regime j!j & U�=2.
In addition to the large energy features there is a subtle

fine structure, shown in the insets of Fig. 4. Interestingly,
the fine structure reflects all energy scales appearing in the
effective theories, i.e., the interend hopping t� and, on an

FIG. 3 (color online). Total magnetic moment M (in 103 �B)
of an ensemble of nanoribbons as a function of the magnetic
field B for different temperatures. The ensemble contains 3000
ribbons for each length L ¼ 8; 10; . . . ; 20. Each individual rib-
bon contributes two Bohr magnetons�B to the total moment if it
is in the triplet state.

FIG. 4 (color online). Spectral functionAL#ð!Þ for t�¼0:006eV
and U� ¼ 0:6 eV, corresponding to a ribbon with W ¼ 3 and
L ¼ 10. The critical field Bc ¼ �J=2 � 2:1 T is indicated by
dashed lines. In the main plot the Gaussian smearing 	 ¼ 200
Kelvin (see text). The insets show the fine structure of the spectral
peaks with narrower Gaussian smearing of 	 ¼ 10 Kelvin (b) and
	 ¼ 0:1 Kelvin (a).
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even finer level, the antiferromagnetic interedge coupling
J ¼ 4ðt�Þ2=U�. For different geometries, resulting in dif-
ferent effective model parameters, the energy scales of the
fine structures scale accordingly.

Stability with respect to H0.—The fermionic low-energy
theory [Eq. (2)] is derived by first order perturbation theory
from H0 þHU, with the inverse bulk gap being the small
parameter. As shown in Fig. 2, this is a remarkably good
approximation. Moreover, due to overall SU(2) invariance,
the low-energy spin physics must be governed by one
single energy scale, namely the singlet-triplet splitting J.
Thus it is reasonable to account for the additional terms H0
in the effective Heisenberg model also in first order
perturbation theory and calculate the corrections to J. We
now discuss a variety of possible perturbation terms in H0.
We find that the resulting corrections to J are smaller than
the uncertainty for the literature parameters t and U.

In the special geometry discussed here, next-nearest
neighbor hopping only gives rise to a shift in the chemical
potential and may therefore be ignored. Third neighbor
hopping and all other hoppings that couple the sublattices
give contributions to t� which are much smaller than the
contribution of the nearest-neighbor hopping, since these
more distant hoppings are exponentially suppressed as a
function of distance. An electric field E along the ribbon
gives rise to a correction �J ¼ JðEL=2U�Þ2.

Two additional terms arise from the long-range Coulomb
interaction. On one hand there is the interedge termVLRnLnR
with ns¼P

�e
y
s�es��1, VLR�e2expð�L=LscÞ=
l with 


the dielectric constant and Lsc the screening length, both of
which depend on the substrate. On the other hand there is

an intraedge term V0

P
sðeys"es" � 1=2Þðeys#es# � 1=2Þ with

V0 � e2
P

i<jjc LðiÞj2jc LðjÞj2 expð�jri � rjj=LscÞ=
jri �
rjj, which has the same form as the Hubbard term in Eq. (2).

Both terms contribute to the energy of the excited states with
more or less than one electron at one end and therewith toU�.
Given the uncertainties for U in the literature (see, e.g.,
Ref. [29]), the actual value of the renormalized U� with all
corrections due to the environment is not accessible theo-
retically and needs to be determined experimentally. One
way to do so is via a measurement of the spectral function
(Fig. 4) in tunneling experiments. Crucially, however, the
exponential length dependence of J is not spoiled by any of
the perturbations to H0 þHU discussed above.

Conclusion.—Motivated by the recent chemical synthe-
sis of armchair ribbons with perfect zigzag ends [22–24],
we have studied the magnetic correlations arising in these
ribbons due to electronic interactions. We have identified
spin-1=2 degrees of freedom at each end of the ribbon.
This spin subsystem may be described by a simple
Heisenberg model, which we have derived directly from
a lattice model and benchmarked against numerically exact
QMC simulations. The two end spins are coupled antifer-
romagnetically. The corresponding singlet-triplet splitting
decays exponentially with the ribbon length. This enables

direct experimental access to the low-energy spin physics,
for which we have proposed two complementary experi-
ments. The setup proposed here thus allows us to study the
basic principles of edge magnetism. A thorough under-
standing of this well-controlled scenario will facilitate
the experimental investigation and the theoretical interpre-
tation of edge magnetism in larger nanoribbons.
We want to thank H. Bluhm and M. Morgenstern for

their valuable remarks on the feasibility of the experiments
proposed here. Furthermore, we thank J. van der Lit and
I. Swart for insightful discussions and for sharing unpub-
lished results with us. Financial support by the DFG under
Grants No. WE 3649/3-1 and No. FOR 1807 is gratefully
acknowledged, as well as the allocation of CPU time
within JARA-HPC and from JSC Jülich.
Note added.—Recently, we became aware of another

theoretical investigation of armchair nanoribbons, focus-
sing on their charge properties [30].
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