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A previously unknown instability creates space-filling lattices of 3D vortices in linearly stable, rotating,

stratified shear flows. The instability starts from an easily excited critical layer. The layer intensifies by

drawing energy from the background shear and rolls up into vortices that excite new critical layers and

vortices. The vortices self-similarly replicate to create lattices of turbulent vortices. The vortices persist

for all time. This self-replication occurs in stratified Couette flows and in the dead zones of protoplanetary

disks where it can destabilize Keplerian flows.
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Introduction.—For a protostar to accrete gas from its
protoplanetary disk (PPD) and form a star, the PPD must
be unstable and transport angular momentum outward [1].
This has led to efforts to find instabilities in PPDs and other
rotating flows that satisfy Rayleigh’s criterion for centrifu-
gal stability; i.e., the absolute value of angular momentum
increases with increasing radius [2]. Numerical studies
[3,4] of PPDs and experimental studies [5] of rotating flows
where the velocity obeys Rayleigh’s criterion confirm the
stability of these flows (although there are recent contro-
versies [6–8]). In a PPD where the gas is sufficiently ion-
ized to couple to magnetic fields, the magnetorotational
instability (MRI) [1] operates. However, large regions of
PPDs, known as dead zones, are too cool and un-ionized to
have magnetorotational instability. Other instabilities
[9,10] could destabilize a PPD, but they require unrealistic
boundaries or continually forced perturbations. Thus, star
formation remains problematic.

Here we report a new finite-amplitude instability
in rotating, stratified, shearing flows in Cartesian or cylin-
drical geometries with velocities that would satisfy
Rayleigh’s stability criterion if the densities were constant
(as assumed by Rayleigh). We examine rotating plane
Couette flow, which is the canonical test for PPD stability.
In previous studies using ideal gases [1,3,4], these plane
Couette flow PPD models were stable, but they were all
initialized with no vertical density gradient and no vertical
gravity g. In contrast, here we include a stably stratified
initial density � with g � 0 (as in a PPD). Previously, we
observed, but did not understand, an instability in a PPD
with an ideal gas and g � 0 [11,12]. Thus, to understand
the instability, here we consider a Boussinesq fluid with
constant g. The 3D vortices found here are unique: a vortex
that grows from a single, small-volume, initial perturbation
triggers a 1st generation of vortices nearby. This 1st gen-
eration of vortices grows and triggers a 2nd generation.
The triggering of subsequent generations continues ad
infinitum. The vortices do not advect in the cross-stream
direction, but the front dividing the vortex-populated fluid

from the unperturbed fluid does. (Figs. 1 and 2.) Because
the vortices grow large and spawn new generations that
march across the domain of a dead zone, we refer to
vortices that self-replicate to fill the domain as zombie
vortices.
The unperturbed velocity of plane Couette flow

observed in a frame with angular velocity �ẑ � f=2ẑ is
�v ¼ �VðxÞŷ with �VðxÞ � �x, where � is the uniform shear,
and x and y are the cross-stream and streamwise coordi-
nates. ‘‘Hatted’’ quantities are unit vectors. The unper-
turbed density is ��ðzÞ ¼ �0ð1� �N2z=gÞ, where �0 is

constant and �N � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�gðd ��=dzÞ=�0

p
is the initial

FIG. 1 (color online). !z=f � Ro of the anticyclonic (blue)
vortices and cyclonic (red) vortex layers in the x-y plane. The
initial perturbing vortex at the origin is above the plane shown
here (z ¼ �0:4). The first generation zombie vortices form at
jxj � 1, and sweep outward in x. The Rossby number Ro of
these vortices is �� 0:2. (The color is reddest at !z=f ¼ 0:2,
e.g., near x ¼ 1=3 at the bottom of panel d; bluest at !z=f ¼
�0:2, e.g., near x ¼ 0:6 in panel d; and green at !z=f ¼ 0).
f= �N ¼ 1 and �= �N ¼ �3=4. The x-y domain is jxj � 4:7124;
jyj � 2:3562, and is larger than shown. Movies of Figs. 1 and 2
are in the Supplemental Material [25]. (a) t ¼ 64= �N.
(b) t ¼ 256= �N. (c) t ¼ 576= �N. (d) t ¼ 2240= �N. See text for
details.
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unperturbed Brunt-Väisälä frequency. In the rotating
frame, the governing equations are

@v=@t ¼ �ðv � rÞv�r�
�0

þ fv� ẑ� ð�� �0Þg
�0

ẑ; (1)

@�=@t ¼ �ðv � rÞ�; (2)

r � v ¼ 0; (3)

where � is the pressure head. When Eqs. (1)–(3) are
linearized about �VðxÞ and ��ðzÞ, the eigenmodes are pro-

portional to eiðkyyþkzz�stÞ. When the initial density �� is
stably stratified or constant, plane Couette flow is neutrally
linearly stable (i.e., s is real, and eigenmodes neither grow
nor decay).

Critical layers.—The eigenequation for the eigenmodes
of Eqs. (1)–(3) is a generalization of Rayleigh’s equation
[13] and is a 2nd-order ordinary differential equation. The
coefficient of the highest-derivative term is

½ �VðxÞ � s=ky�f½ �VðxÞ � s=ky�2 � ð �N=kyÞ2g: (4)

Eigenmodes of an ordinary differential equation are sin-
gular at locations x� where the coefficient of the highest-
derivative term is zero. There they form critical layers [13].
For fluids with constant density, critical layers obey
�Vðx�Þ ¼ s=ky. We refer to these as barotropic critical

layers. For �N � 0, expression (4) shows that there are
eigenmodes with barotropic critical layers, but our compu-
tations show that they are difficult to excite and never form
vortices. However, there is another class of eigenmodes
with critical layers; they have �Vðx�Þ � s=ky 	 �N=ky ¼ 0,

and we call them baroclinic critical layers. Weak baroclinic
critical layers were shown to exist in nonrotating, stratified
flows [14], but we believe that this is the first study of these
layers in flows with f, �N, and j�j of the same order (as near
the midplane of a PPD). With anticyclonic shear (f� < 0),
as in a PPD, all of our calculations with �N ’ f ’ j�j fill the
domain with zombie vortices when the initial finite-
amplitude perturbation is sufficiently large (see below).
To verify our computations, flows were computed with
two independent codes. At the x boundaries, one code
enforced an outward-going wave condition, and the other
used the shearing sheet approximation [15]. The codes
produced similar results.
We show that the new finite-amplitude instability works

by first creating large-amplitude vortex layers at the critical
layers. The curl of Eq. (1) gives

@!z=@t ¼ �ðv � rÞ!z þ ð! � rÞvz þ ðfþ �Þð@vz=@zÞ;
(5)

where ! is the relative vorticity ! � r� ðv� �VðxÞŷÞ.
Vortex layers form at baroclinic critical layers because
the z component of the velocity vz of the neutrally stable
eigenmode is singular there. Equation (5) shows that the
generalized Coriolis term ðfþ �Þð@vz=@zÞ creates !z.
Within the baroclinic critical layer, the singular @vz=@z
is nearly antisymmetric about x ¼ x�; on one side of the
layer vz ! 1, and on the other vz ! �1; thus, the last
term in Eq. (5) creates a large-amplitude vortex layer
centered at x� made of dipolar segments with one side
cyclonic (!zf > 0) and the other anticyclonic (!zf < 0)
[c.f. Fig. 1(a)]. Barotropic critical layers do not form vortex
layers; although their eigenmodes’ vy is singular, vz is

everywhere finite. From this point on, we use nondimen-
sional units with the units of time 1= �N and length
jðL �NÞ=ð2��Þj, where L is the periodicity length in y.
Thus, ky in expression (4) is 2�m=L, wherem is an integer.

Baroclinic critical layers have ky � 0, and expression (4)

shows that they are at

x� ¼ �ðs	 1Þ=m: (6)

Equations (1)–(3) and their boundary conditions are invari-
ant under translations in y and z, and also under translation
in x by � when accompanied by a streamwise boost in

FIG. 2. Zombie vortices sweep outward from the perturbing
vortex at the origin in the x-z plane (at y ¼ 0). Anticyclonic !z

is black (darkest is !z=f ¼ �0:2) and cyclonic is white (lightest
is !z=f ¼ 0:2). This is the same flow as in Fig. 1. The domain
has jzj � 4:7124 and is larger than shown. (a) t ¼ 128= �N.
Critical layers with s ¼ 0 and jmj ¼ 1, 2, and 3 are visible.
Diagonal lines are internal inertio-gravity waves with shear, not
critical layers. (b) t¼480= �N. 1st generation vortices near jxj¼1
and 1=2 have rolled up from critical layers with s ¼ 0 and
jmj ¼ 1 and 2, respectively. (c) t ¼ 1632= �N. 2nd generation
jmj ¼ 1 vortices near jxj ¼ 0 and 2 were spawned from the 1st
generation vortices near jxj ¼ 1. Another 2nd generation of
jmj ¼ 1 vortices is near jxj ’ 1=2 and 3=2, which were spawned
by the 1st generation near jxj ¼ 1=2. (d) t ¼ 3072= �N. 1st, 2nd,
and 3rd generation vortices.
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velocity of ��. The latter symmetry is shift-and-boost
symmetry, c.f. [16,17], and is the basis of the shearing
sheet boundary conditions [1,15]. Because of the shift-
and-boost symmetry, the origin of the x axis is not unique,
so Eq. (6) has the following meaning: x� is the cross-stream
distance between a perturbation and the location of the
baroclinic critical layer that it excites.

Many types of perturbations create zombie vortices.
Most relevant to PPDs is a Kolmogorov spectrum of noise
where the velocity and Rossby number Ro � !z=f of the

initial eddies scale, respectively, as l1=3 and l�2=3, where l
is the eddy diameter. The smallest eddies have the largest
vorticity and Ro. In calculations with �=f ¼ �3=4 and
0:5 � �N=f � 1 (the regions we explored in a PPD [11]),
regardless of how small we make the amplitude of the
initial Kolmogorov energy spectrum, if the spatial resolu-
tion is sufficient, the smallest eddies have a sufficiently
large jRoj to trigger the instability and create zombie
vortices. The vortices eventually fill the domain, such
that at late times the volume they occupy is of order of
the domain’s volume. To better understand zombie vortex
formation and replication, we simulated flows with �=f ¼
�3=4 and 0:5 � �N=f � 1 initialized with a single
‘‘shielded’’ [18] anticyclone at the origin. These initial
conditions produced flows filled with zombie vortices
with �0:35< Ro<�0:15 when the initial anticyclone
had jRoj * 0:2. Figures 1 and 2 illustrate the case where
the initial anticyclone has Ro ¼ �0:31 (as in the PPD
where we first observed zombie vortices [11]) and volume
�10�4 of the domain. The velocity perturbation due to the
initial vortex is significant only near the origin and is small,
�10�2�Lx, where Lx is the domain size in x. (Velocity
perturbations in PPD studies are considered small when
they are less than �0:1�Lx [3].) Our initial vortex is in
quasiequilibrium as in [11] such that Eqs. (1) and (3), but
not (2), are in approximate steady equilibrium. The initial
density perturbation is confined to the initial vortex.
Equation (2) allows � and Nðx; y; z; tÞ to change.
Figure 1 shows !z in an x-y plane. The perturbing vortex
is nearly steady, so it excites critical layers with frequen-
cies s ¼ 0. Thus, Eq. (6) shows that the critical layers are at
jx�j ¼ 1=jmj with no critical layers at jxj> 1. Figure 1(a)
shows vortex layers at these critical layers: !z appears at
x ¼ 1=jmj as jmj segments of dipolar stripes aligned in the
streamwise y direction for jmj ¼ 1, 2, and 3. A Fourier
analysis shows that the stripes have s ¼ 0. We previously
showed [19,20] that in shear flows with f� < 0, cyclonic
vortex layers aligned in the streamwise direction are stable,
whereas anticyclonic layers are unstable, roll up into dis-
crete anticyclones, and merge to form one large anticy-
clone. This behavior is seen in Fig. 1(b). The anticyclonic
vorticity at x ¼ 1=3 has rolled up and merged into a
single anticyclone (near y ¼ 1:5). The anticyclonic vortic-
ity at x ¼ 1=2 has rolled up into an anticyclone near y ¼
�0:5. In contrast, the cyclonic vorticity near x ¼ 1=2 has

formed a continuous, meandering filament. At later times
[Fig. 1(c)] the anticyclones near x ¼ 1=3 (and near y ¼ 2)
and near x ¼ 1=2 (and near y ¼ �1) have become larger.
Figures 1(c) and 1(d) show critical layers and vortices at
jxj> 1, which cannot be created by perturbations at the
origin. The layers at jxj> 1 are due to the self-replication
of 1st generation vortices at jxj � 1. A vortex at any
location will excite critical layers in a manner exactly
like the original perturbing vortex due to the shift-and-
boost symmetry (and will have s ¼ 0 when viewed in the
frame moving with the perturbing vortex). Figure 1(c)
shows 2nd generation critical layers at x ¼ 4=3, 3=2, 2,
and 2=3, all with jmj ¼ 1 and excited by 1st generation
vortices at x ¼ 1=3, 1=2, 1, and �1=3, respectively.
Figure 1(d) shows 3rd generation critical layers at 2< x �
3 and 4th generation critical layers forming at x > 3. At
later times the vortices from jmj ¼ 1 critical layers domi-
nate [Fig. 2(d)]. At very late times, the vortices have cross-
stream diameters of order unity (see below). Within each
zombie vortex the density mixes so that it is in accord with
its near hydrostatic and cyclogeostrophic equilibrium
(c.f. [18]). However, there is horizontal, but very little
vertical, mixing of density outside the vortices, so the
background vertical density stratification and N remain
within 1% of their initial unperturbed values. The lack of
vertical mixing, despite strong horizontal mixing, was seen
in our earlier simulations [11] and laboratory experiments
[21] of vortices in rotating, stratified flows.
Figure 2 shows the flow in Fig. 1 viewed in the x-z plane

and illustrates our main result: at late times the domain fills
with anticyclones. Because the initial flow is homogeneous
with uniform � and �N, the vortices form a regular lattice
despite the flow’s turbulence. As time progresses in Fig. 2,
the vortex population spreads out from the perturbing
vortex at the origin. At early times [Fig. 2(a)], the flow
has 1st generation critical layers, with jmj ¼ 1, 2, and 3
being most apparent. In this first generation, and all sub-
sequent generations, a vortex perturbs the flow and creates
four new prominent vortices at its jmj ¼ 1 critical layers at
locations in x that are 	lx distant from itself and at
locations in z that are 	lz distant from itself. (lx is physi-
cally set by, and equal to, the distance in x from a perturb-
ing vortex to the anticyclonic piece of the vortex layer
formed by its jmj ¼ 1 critical layer; this distance is slightly
greater than unity.) The 2nd generation m ¼ 1 critical
layers created by the 1st generation vortices with jmj ¼
1, 2, and 3 are faintly visible in Fig. 2(b) and much more so
in Fig. 2(c). At later times [Fig. 2(d)], the jmj ¼ 1 vortices
descended from the 1st generation jmj ¼ 1 vortices domi-
nate and form a lattice of zombie vortices located at [x ¼
2nlx, z ¼ 2jlz] and at [x ¼ ð2nþ 1Þlx, z ¼ ð2jþ 1Þlz], for
all integers n and j.
The characteristic jRoj of late-time zombie vortices in

Figs. 1 and 2 is �0:2, consistent with zombie vortices in
flows initialized with noise. After a vortex forms, its jRoj
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intensifies to its approximate peak value within a few of its
turnaround times, and it remains near that value indefi-
nitely. Based on several numerical experiments, it appears
that the late-time values of jRoj depend on the parameters
�N, f, and � rather than on properties of the initial pertur-
bation. To examine the energy of the vortices and discover
its source, we decomposed the flow’s energy into two
orthogonal parts: (1) the zonal component consisting of
the kinetic energy of the streamwise velocity component
with Fourier modes kz ¼ ky ¼ 0 (i.e., the background

shearing flow), and (2) the nonzonal component consisting
of everything else, including the potential energy
g
R
zð�� ��Þ (dvolume). If the initial flow were unper-

turbed, then the initial energy would be all zonal. In the
flow in Figs. 1 and 2, there is a small initial nonzonal
component due to the initial vortex at the origin. At later
times, the nonzonal component represents the energy
of the initial vortex and the zombie vortices (and turbu-
lence and waves). The nonzonal energy initially increases
superexponentially for 0 � t & 190, increasing to �15
times its initial value. Then, the nonzonal energy increases
approximately exponentially with an e-folding time of
�860, such that at t ¼ 3072 in Fig. 2(d) the nonzonal
energy is more than 400 times its initial value. The energy
increase in the nonzonal component is supplied by the zonal
energy. The exponential growth of the nonzonal energy is
due to the fact that vortices in the vortex-populated region
grow exponentially in size, and not due to a long-term
exponential increase of the velocity of each zombie vortex.
Therefore, the nonzonal energy must plateau once the
vortices fill the domain. If the self-replication were self-
similar, we would expect the perimeter of the front between
the vortex-populated flow and unperturbed flow in each x-z
plane to grow as t and the number of vortices to increase as
t2, which is consistent with our calculations.

Discussion.—We have shown that linearly, neutrally sta-
ble plane Couette flow becomes finite-amplitude unstable
when it is vertically stably stratified. In the example here,
baroclinic critical layers are excited by a small vortex, but
our calculations show that a variety of small-volume, small-
energy perturbations cause critical layers to grow and roll up
into large-volume, large-energy vortices. In general, this
instability self-replicates with each new vortex exciting
new layers that roll up until the domain fills with compact
3D (i.e., not Taylor columns) vortices. The robustness of
zombie vortices is evident from the fact that they survive
indefinitely even though they are embedded in a turbulent
flow at late times. They survive by drawing energy from the
background shear flow. For constant �N and �, the unper-
turbed flow is homogeneous, and vortex self-replication is
self-similar with zombie vortices forming a regular lattice.
The regularity of the lattice allows for reinforcement: each
vortex reexcites four other vortices in the lattice, and each
vortex in the lattice is continually reexcited by four other
vortices. Zombie vortices occur frequently in our simulations

of Boussinesq and compressible fluids, so they pose a para-
dox: if they are so common, why have they not been reported
earlier? We believe there are three reasons: (1) instabilities
have not been systematically sought in stratified Couette
flows [9]; (2) with few exceptions [22], stability studies of
ideal gases in PPDs were carried out with no initial vertical
stratification [3,4]; and (3) the necessary spatial resolution to
compute critical layers is lacking in many calculations.
Zombie vortices occur in our calculations of the dead zones
of protoplanetary disks [11], which suggests that they may
have an important role in star and planet formation. In
addition, zombie vortices should be observable in laboratory
circular Couette flows with stratified salt water for parameter
values where the flow is linearly stable with respect to
centrifugal instability [13], stratorotational instability (SRI)
[9,23], and other instabilities [24].
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