
Observation of Locked Phase Dynamics and Enhanced Frequency Stability
in Synchronized Micromechanical Oscillators

Deepak K. Agrawal, Jim Woodhouse, and Ashwin A. Seshia*

Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
(Received 21 March 2013; revised manuscript received 13 May 2013; published 20 August 2013)

Even though synchronization in autonomous systems has been observed for over three centuries, reports

of systematic experimental studies on synchronized oscillators are limited. Here, we report on observa-

tions of internal synchronization in coupled silicon micromechanical oscillators associated with a

reduction in the relative phase random walk that is modulated by the magnitude of the reactive coupling

force between the oscillators. Additionally, for the first time, a significant improvement in the frequency

stability of synchronized micromechanical oscillators is reported. The concept presented here is scalable

and could be suitably engineered to establish the basis for a new class of highly precise miniaturized

clocks and frequency references.
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The phenomenon of synchronization is widely observed
in a variety of scientific contexts. Examples of synchroni-
zation can be found in various physical domains such as the
coupled out-of-phase motion of pendulum clocks [1,2],
multiorder synchronization in a magnetic resonance laser
[3], rhythmic flashes of light pulses in fireflies [4], and the
biological clock in humans, animals, and plants [5]. These
apparently disparate systems are linked by a common
thread that relates to the adjustment of rhythms in the
presence of a weak coupling force, resulting in a frequency
entrainment of these coupled self-sustained oscillators.
Synchronized oscillators are associated with frequency
entrainment and phase locking behavior.

There has been much recent interest in observations
of synchronization in micro- and nanomechanical
oscillators due to several practical applications [6–10].
However, experimental observations of synchronization
at these length scales have been limited to the observation
of frequency entrainment either in externally driven
micromechanical resonators [11] or in laser driven opto-
mechanical oscillators [12,13]. Moreover, the employed
transduction schemes and coupling arrangements in these
topologies result in additional complexities and limit
scalability and chip-scale system integration. In this
Letter, for the first time, we report the coupled frequency
and phase dynamics of electrically coupled autonomous
micromechanical oscillators with physical insight into
system parameters governing the observation of synchro-
nized response. Two electrostatically driven double-ended
tuning-fork (DETF) silicon microresonators are utilized as
the frequency determining elements for two independent
oscillators that are then electrically coupled to observe a
synchronized response.

An optical micrograph of the resonators is shown in
Fig. 1(a). Each resonator is excited electrostatically in
the out-of-phase in-plane flexural mode using a dc bias
(Vdc) and an ac (vac) voltage, applied to the driving

electrode (see the Supplemental Material [14]). This
results in a time varying capacitance across the electrodes
which transforms the dynamic displacement to an output
current (I) [15]. A parallel-plate capacitor situated between
the two resonators couples the motional currents.
The open-loop response of the resonators is recorded

using a network analyzer (Agilent 4396B) at several dc and
ac voltages. Measurements are conducted at room tem-
perature in a custom vacuum chamber at a pressure of
approximately � 50 mtorr. The measured frequency
response in the linear regime is shown in Fig. 1(b). For
similar bias and operating conditions, the average mis-
match in the resonance frequencies is � 440 Hz, arising
due to manufacturing variations inherent to the fabrication
process. The inherent dependence of the resonance fre-
quency on Vdc in electrostatically transduced microelec-
tromechanical systems (MEMS) resonators is seen to
follow a well-established voltage tuning behavior [16].
The effect of vac on the frequency response is shown in
Fig. 1(c). An increase in vac results in a large dynamic
displacement which thereby increases the impact of the
nonlinear restoring force on the resonance frequency,
resulting in an amplitude-frequency (a-f) dependence.
Moreover, for the given topology, mechanical nonlineari-
ties harden the resonator and increase the resonance fre-
quency while electrical nonlinearities are softening in
nature, resulting in a reduction in the resonance frequency
[17]. The cubic nonlinearity in the restoring force is also
commonly associated with the Duffing bifurcation [18].
Next, each DETF resonator is embedded within the

feedback loop of distinct board-level oscillator circuits.
Each oscillator circuit comprises of a transimpedance
amplifier, bandpass filter, and comparator. This oscillator
architecture has been previously discussed elsewhere (see
the Supplemental Material [14]) [19]. In this closed-loop
configuration, the resonator is driven by the signal fed back
to the driving electrode from the output of the comparator.

PRL 111, 084101 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

23 AUGUST 2013

0031-9007=13=111(8)=084101(5) 084101-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.111.084101


This feedback signal amplitude (VF) is regulated using a
potential divider arrangement. An increase in VF increases
the motional amplitude of the resonator and hence the a-f
dependency via cubic nonlinearities.

The coupled dynamics of the discussed oscillator can be
described using [14]

€I1;2 þ!2
o1;2I1;2 þ�1;2I

3
1;2 þ �1;2

_I1;2 � �1;2sgnð _I1;2Þ
þD1;2ðI1;2 � I2;1Þ ¼ 0: (1)

In Eq. (1), the first two terms represent a linear oscillator
with natural frequency !o while �, �, �, and D1;2 repre-

sent the cubic nonlinearity of the resonator, positive linear
damping of the resonator, negative damping regulated by
the comparator output, and the strength of the current
coupling, respectively. These equations can be solved nu-
merically to assess the effects of VF and Vdc on the coupled
oscillator dynamics (see the Supplemental Material [14]).

During experiments, when both the oscillators are oper-
ated simultaneously, the coupling force is governed by the
coupling capacitance and the difference of the motional
currents. If the frequencies of the coupled oscillators are
denoted as F1 and F2 and the mismatch as �F ¼ F1 � F2,
frequency entrainment is achieved when �F ¼ 0 [5]. The
corresponding frequency locking range is �f ¼ f1 � f2,
where f1 and f2 are the output frequencies of the
uncoupled oscillators, a condition in which only one oscil-
lator is operated at a time. The applied dc bias voltages for
each resonator are denoted as Vdc1 and Vdc2 , respectively.

The output response of the oscillators is observed using
a spectrum analyzer (Agilent 4396B) and an oscilloscope
simultaneously, and measurements are made when the
oscillators exhibit stable limit-cycle behavior. Because
of the capacitive coupling between the oscillators, the
responses of each oscillator may be observed from the
output port of the other. Initially, VF is limited to 16 mV
and a 15 V dc bias is applied to each oscillator, resulting in
coupled steady-state limit-cycle responses. Consequently,
�F (� 440 Hz) is reduced by varying Vdc1 from 15 to 35 V

while maintaining Vdc2 at 15 V. However, under such

conditions, entrainment is not observed. This is potentially
due to the employed nature of coupling and the underlying
coupled oscillator dynamics. When two oscillators are
coupled reactively, entrainment is achieved only when
the amplitude and frequency response are correlated
through a nonlinear mechanism. This is due to the fact
that in reactively coupled oscillators, the coupling force is
related to the amplitude rather than the phase, and hence
the phase trajectories of reactively coupled oscillators are
modified when the oscillation frequency is a function of the
oscillation amplitude [5,20]. In this case, the a-f correla-
tion is increased by increasing VF.
When VF is set to 32 mV, we find that the oscillators lock

to a single frequency for a certain range of applied dc
voltages. The same set of measurements is repeated by
operating the oscillators at different Vdc2 (15 and 20 V) and

VF (32–160 mV) voltages, while Vdc1 (15–35 V) is varied.

The measured output power Pout of specific unsynchron-
ized and synchronized states is shown in Fig. 2(a), while
several frequency locking ranges are shown in Figs. 2(b)
and 2(c) (see the Supplemental Material [14]).
In these plots, a clear enhancement in the synchroniza-

tion region (frequency locking range) can be seen as the
feedback voltage is increased from 50 to 160 mV. This is
associated with the increasing amplitude dependence of the
frequency response of the resonator, as can be seen from
Fig. 1(c). These findings are in general agreement with the
modeling results discussed in the Supplemental Material
[14] and theoretical work conducted earlier on the depen-
dence of the frequency pulling effect in reactively coupled
oscillators with the observation of synchronization [20].
The constant phase difference of entrained oscillators is

another important characteristic of synchronization which
is often not reported [11–13]. This characteristic differ-
entiates synchronization from forced excitation where the
phase of the forced resonator follows the phase of an
externally generated excitation force [5]. Assuming the
phase responses of the oscillators are denoted as �1ðtÞ

FIG. 1 (color online). Coupled silicon DETF micromechanical resonators. (a) An optical micrograph of the device fabricated in a
commercial foundry process using a standard silicon-on-insulator MEMS process. (b) The linear frequency response is plotted at
several Vdc voltages and at a fixed vac of 16 mV. In these responses, a reduction in the resonance frequency is a function of dc voltage
results due to a reduction in the stiffness of the resonator. This characteristic can be used to reduce the frequency mismatch between the
resonators. (c) The nonlinear response is plotted at several vac voltages and at a fixed 25 V Vdc voltage. At higher excitation levels, the
resonant response skews towards the right, eventually exhibiting the Duffing bifurcation.
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and �2ðtÞ while the phase difference between them is
�� ¼ �1ðtÞ ��2ðtÞ, a state of synchronization is consis-
tent with �� ¼ �c. Here, �c is considered to be bounded
rather than constant, as the noise sources in the oscillators
may result in limited perturbation in the phase response.

The relative phase response of the coupled oscillators
is logged using a dual channel universal counter (Agilent
53132A). During these measurements, Vdc2 is kept constant

while Vdc1 is tuned to vary the frequency difference

between the two oscillators. Subsequently, the measure-
ments are repeated for different feedback voltages. In
Fig. 3(a), several phase locked states are shown, each
corresponding to a different value of VF (see the
Supplemental Material [14]). The reactive coupling
between the oscillators allows for attraction or repulsion
of the phase trajectories, resulting in in-phase and out-of-
phase synchronization. Moreover, when the oscillators are
synchronized, different initial frequency mismatches result

in different �c values [5]. However, in our case, the
variation in �f is limited by the minimum possible varia-
tion in Vdc1 which controls the output frequency of oscil-

lator 1 and limits the number of observed phase locked
states. Further, when the frequency detuning is on the edge
of the locking range, a nearly bounded phase difference
was observed for a very short period of time, followed
by sudden jumps of 2� in �� as shown by curve B in
Fig. 3(b), illustrating the phase slip phenomenon. However,
with higher detuning, the phase difference grows continu-
ously, indicating loss of synchronization, as shown in
curves C, D, and E.
Typically, in an electronic oscillator, fluctuations in the

amplitude trajectory are limited due to the employed am-
plitude limiting mechanism (such as automatic gain con-
trol circuitry). However, due to the absence of a limiting
mechanism in the phase trajectory, any perturbations in the
phase resulting from a stochastic process get accumulated

FIG. 2 (color online). Response of the coupled oscillators. (a) Two marked peaks are observed in the frequency spectrum
corresponding to the different output frequencies of the unsynchronized oscillators, while in the case of synchronization, a single
peak is observed, indicating an entrainment condition. (b) Various frequency locking ranges are shown when the oscillators are
operated at VF values ranging from 32 to 160 mV and at (b) 15 V and (c) 20 V Vdc2 voltages. Here, f1 is the output frequency of

oscillator 1, while �f represents the frequency difference of the uncoupled oscillators.

FIG. 3 (color online). Relative phase response (��) of synchronized and unsynchronized oscillators. (a) Several phase locked states
are observed when the oscillators are operated at different values of VF due to the variation in �f and the initial phases. In these plots,
the fluctuations in �� (in degrees) show the limited interaction of the inherent noise with the phase trajectories of each oscillator.
A clear reduction of fluctuations in �� is observed with higher VF voltages. (b) In this plot, curve A corresponds to an entrainment
state while curve B demonstrates the phase slip phenomenon, indicating a state of nearly synchronized oscillators. As the frequency
mismatch increases, the oscillators oscillate with the different frequencies, resulting in uniform boundless growth in �� (curves
C, D, and E).
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over time. These random fluctuations in phase, referred to
as phase diffusion, often limit the stability of the oscillator
output frequency [21]. Other factors such as environment
sensitivity and component aging may induce drift in the
output frequency [22].

In our experiments, for the synchronized case, we
observe a reduction in the relative phase diffusion with
higher VF values, as shown in Fig. 3(a). A high VF

increases the correlation between amplitude and phase
responses as discussed, and hence the impact of the cou-
pling force on the phases of the coupled oscillators is
increased. Thus, the coupling force acts as a phase control
mechanism to reduce random phase fluctuations when the
oscillators are synchronized. However, it has been inde-
pendently observed that the higher cubic nonlinearity of
the MEMS resonator may degrade the frequency stability
of the oscillator [23,24]. Therefore, to compare the fre-
quency fluctuations of the uncoupled oscillators with the
synchronized case, we must determine the optimum feed-
back voltage at which the uncoupled oscillators demon-
strate the greatest frequency stability.

A comparison of the frequency stability can be carried
out using the nonoverlapping estimation of the Allan de-
viation [�yð�Þ] at various integration times (�) from the

sampled time history [25]. To calculate �yð�Þ of the imple-

mented oscillators, the output frequencies of the uncoupled
oscillators is logged using a frequency counter for 600 s
with a sampling time of 0.2 s at different values of VF, and
the recorded data are averaged over different integration
times. Subsequently, the frequency response of the syn-
chronized oscillators is recorded. Using the measured
frequency response of the uncoupled oscillators, the calcu-
lated Allan deviation of oscillator 2 is shown in
Fig. 4(a). From these plots, it can be seen that at a VF of
50 mV, frequency fluctuations are the least, and this is also
the case for oscillator 1. At this driving voltage, �yð�Þ of
the synchronized oscillator 2 is shown in Fig. 4(b). In these
plots, a clear improvement in the frequency stability
can be seen when the oscillators are synchronized.

A similar improvement is observed for oscillator 1 (see
the Supplemental Material [14]). In these plots, the nega-
tive, zero, and positive slope responses indicate the pres-
ence of white, 1=f, and random walk frequency noise
sources in the oscillator [26].
In these measurements, we observe an improvement in

the short-term frequency stability of the synchronized
oscillator 2 (� ¼ 0:2 s) by a factor of � 7� compared to
the uncoupled case. Thus, the phase locking characteristic
inherent to the synchronization process can be used as a
frequency stabilization mechanism to improve the fre-
quency stability of MEMS oscillators. Moreover, this
observation challenges existing theories which predict
that the improvement in the frequency stability of synchro-
nized oscillators scales only as the number of oscillators
in the array [27,28]. Our results demonstrating � 7�
improvement in the short-term frequency stability in a
two element array of coupled oscillators indicate that this
enhancement in frequency stability may be more signifi-
cant than previously predicted. These observations open
the door to further studies and the engineering of the
phenomenon of synchronization to applications in minia-
turized timing devices and frequency references.
In this Letter, we report a minimum frequency fluctua-

tion (for the unsynchronized case) when the oscillators are
operated at a VF of 50 mV. However, random fluctuations
in the phase difference of the synchronized oscillators
were found to be least at a VF of 160 mV. This discrepancy
may be due to the cross correlation between amplitude and
phase noise, modulated by VF due to displacement-
dependent resonator nonlinearities. Therefore, an increase
in VF may increase the random perturbations in the phase
trajectories of the individual oscillators [29]. If the cou-
pling force between the phase trajectories can be suitably
increased without changing the nonlinear dynamics of the
MEMS oscillators, a further improvement in frequency
stability may be achieved.
This Letter presents the first experimental realization

of electrostatically driven coupled micromechanical

FIG. 4 (color online). Allan deviation [�yð�Þ] of the implemented MEMS oscillators. (a) A nonoverlapping estimation of �yð�Þ of
the uncoupled oscillator 2 is shown here in units of parts per billion (ppb) with respect to various integration times. A trade-off between
VF and �yð�Þ can be observed in these plots due to the dependency of the output signal power and the a-f correlation on VF. (b) �yð�Þ
of the oscillator for uncoupled and synchronized cases are compared here. In both the cases, the oscillator is operated at a VF of 50 mV.
A clear enhancement in the frequency stability is visible when the oscillator is entrained, compared to the uncoupled case.
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oscillators where several different states of synchroniza-
tion are reported associated with reduction in the combined
phase diffusion rate. The employed coupling could also be
implemented in electronic oscillators based on other tech-
nologies. Furthermore, the presented methodology can
conceptually be scaled to larger-scale arrays, providing a
test bed for studies on the dynamics of coupled synchro-
nized oscillators in the presence of nonlinearities and
stochastic processes. These investigations could lead to
the realization of practical applications in information
processing [6,7] and timing references [8–10].
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