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We propose an extension of the continuum discretized coupled channels (CDCC) method, where the

projectile is described by a microscopic cluster model. This microscopic generalization (MCDCC) relies

only on nucleon-target interactions, and therefore presents an important predictive power. Core excitations

can be included without any further parameter. As an example, we investigate the 7Liþ 208Pb elastic

scattering at Elab ¼ 27 and 35 MeV. The 7Li nucleus is known to present an �þ t cluster structure, and is

well described by the resonating group method. An excellent agreement is obtained for the 7Liþ 208Pb

elastic cross sections, provided that breakup channels are properly included. We also present an

application to inelastic scattering and discuss future applications of the MCDCC.
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The study of exotic nuclei is of major interest in current
nuclear physics research [1–3]. These nuclei present
unusual properties, such as a low breakup threshold and an
anomalously large root mean square radius. Experimentally
they are investigated through reactions induced by radioac-
tive beams [4]. The first breakthrough in this field was
the discovery of a large radius of the 11Li isotope [5], which
led to the definition and introduction of ‘‘halo’’ nuclei in
the nuclear nomenclature. A halo nucleus is considered as a
tightly bound core nucleus surrounded by one or twoweakly
bound nucleons. Thanks to the recent development of
experimental facilities, other exotic nuclei, such as 6He,
8B, and 14Be, can now be produced with high intensities.
In recent years, the effects of low breakup threshold energies
have been experimentally studied in various processes
involving heavy targets, such as elastic scattering [6],
breakup [7], and fusion [8]. As a general statement, the large
rms radius of exotic nuclei has a strong impact on the
nucleus-nucleus interaction, as it extends further the range
of the nuclear component and increases couplings to con-
tinuum states.

An accurate description of the breakup processes requires
high quality reaction models. A scattering model essentially
relies on two ingredients: (i) a quantum description of the
scattering process and (ii) a reliable wave function that
faithfully describes the projectile. Optimizing the descrip-
tion of the projectile, in particular, for exotic nuclei, is a
crucial issue in reaction models.

At high energies, the Glauber model [9], using the eikonal
approximation [10,11], provides an accurate description of
various cross sections. Early calculations, based on the adia-
batic approximation, were recently extended to include ex-
cited or breakup states of the projectile [12,13]. The eikonal
approximation provides a significant simplification of the
Schrödinger equation. This makes it possible to perform

two-body and three-body breakup calculations, with a cor-
rect treatment of scattering boundary conditions [14,15].
At low energies (i.e., typically around the Coulomb bar-

rier) the eikonal approximation is not valid. The low-energy
region around the Coulomb barrier is most interesting as
quantum barrier tunneling effects become relevant. In turn,
they induce greater sensitivity of the scattering system to the
detailed nature of the couplings. In this energy regime, the
continuum discretized coupled channel (CDCC) method,
originally developed for deuteron-induced reactions [16],
has proven to be an accurate theoretical tool [17,18]. Since
the deuteron can be easily broken up, the theoretical
description of the dþ nucleus elastic cross section can be
significantly improved by including couplings to the pþ n
breakup channels. The CDCC theory is also well adapted to
exotic nuclei, owing to their low binding energies.
In standardCDCCcalculations, the projectile is described

by a two-body structure, where the constituents interact
through an appropriate potential (fitting, for example, the
ground-state energy). The internal Hamiltonian is then
solved over a basis, and the associated eigenstates are used
in an expansion of the projectile-target wave functions.
Positive-energy states are referred to as pseudostates as
they provide an approximation of the two-body continuum.
In addition to the textbook example dþ 58Ni reaction [19],
other reactions have recently been investigated within this
framework (see Ref. [20] for a recent review). The formal-
ism has been extended further to three-body projectiles
[21,22] to deal with two-neutron halo nuclei such as 6He
and 11Li, so-called Borromean nuclei.
These traditional CDCC calculations, however, present

shortcomings. The Hamiltonian associated with the sys-
tem requires optical potentials between the target and the
projectile constituents. If optical potentials are in general
available for nucleons and � particles, they are often
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unknown for heavier nuclei, owing to the lack of data on
elastic-scattering cross sections. Then, approximations
must be used, either by scaling optical potentials from
neighboring nuclei or by evaluating folding potentials.
Another limitation comes about from the potential-model
description of the projectile. If this approximation is, in
most cases, reasonable, it may introduce inaccuracies in
the cross section. In particular, core excitations are known
to be important in many exotic nuclei, and their effect is
absent from most CDCC calculations (see, however,
Ref. [23] where core excitations have been included in
the breakup of 11Be and 17C on 9Be).

In this Letter, we propose an extension of the CDCC
theory by using a microscopic cluster description of the
projectile. In the microscopic CDCC approach (MCDCC),
the projectile (with Ap nucleons) is described by a many-

body Hamiltonian

H0 ¼
XAp

i¼1

ti þ
XAp

i<j¼1

vij; (1)

where ti is the kinetic energy operator of nucleon i, and vij

is a nucleon-nucleon interaction. A Hamiltonian such as
that of Eq. (1) is common to all microscopic theories, such
as the fermionic molecular dynamics [24], the no-core
shell model [25], or the variational Monte Carlo method
[26], to cite a few. However, a fundamental issue in CDCC
calculations is the ability of the model to describe contin-
uum states of the projectile and how they influence the
reaction dynamics. Recent advances in the no-core shell
model [27] and the Green’s function Monte Carlo method
[28] have been successful to describe the continuum, but
going beyond nucleon-nucleus systems remains a compli-
cated task within these approaches. We use here the cluster
approximation, known as the resonating group method
(RGM) [29,30], where the treatment of nucleus-nucleus
scattering is a direct extension of bound-state calculations.
In the RGM, an eigenstate of the Hamiltonian (1) is written
as an antisymmetric product of cluster wave functions.
This method, and the equivalent generator coordinate
method (GCM, [31]), has been applied to spectroscopic
and scattering properties of many systems (see Ref. [30]
and references therein).

In the present exploratory work, we consider 7Li as the
projectile. The RGM GCM is well known to reproduce
most spectroscopic features of this nucleus (as well as of its
mirror partner 7Be), by assuming an �þ t structure (or
�þ 3He for the mirror nucleus) [32]. In other words, the
RGM 7Li wave functions associated withH0 are defined as

�‘jm
k ¼ A½½�� ��t�1=2 � Y‘ð��Þ�jmg‘jk ð�Þ; (2)

where �� and �t are shell model wave functions of the �
and t clusters, ‘ is the orbitalmomentum, j the total spin, and
index k labels the bound and continuum states. InEq. (2),� is
the relative coordinate (see Fig. 1), andA is the seven-body

antisymmetrization operator which takes into account
the Pauli principle among the 7 nucleons of the projectile.

The relative wave functions g‘jk ð�Þ are determined from the

Schrödinger equation associated with H0.
In general, the RGM equation providing the projectile

wave functions (2) is nonlocal [29]. The GCM is strictly
equivalent to the RGM, but it is better adapted to numerical
calculations, as it makes use of two-cluster Slater determi-
nants. In the GCM, the wave function (2) is written as

�‘jm
k ¼

Z
f‘jk ðSÞ�‘jmðSÞdS; (3)

where S is the generator coordinate, f‘jk ðSÞ are the genera-
tor functions, and �‘jmðSÞ are 7� 7 projected Slater
determinants with four 0s orbitals centered at �3S=7 and
three 0s orbitals centered at 4S=7. Using Slater determi-
nants in the calculation of matrix elements of H0 (and of
other operators, such as the electromagnetic ones) is quite
systematic and can be extended to the p and sd shells, even
with core excitations [33]. Center-of-mass effects are
exactly removed when the oscillator parameters of both
clusters are identical.
The Hamiltonian of the projectileþ target system is

defined as

H ¼ H0 þ TR þXAp

i¼1

Vtiðri � RÞ; (4)

where R is the projectile-target relative coordinate, ri the
nucleon coordinates defined from the projectile center of
mass (see Fig. 1), and Vti are the nucleon-target interac-
tions. The total wave function is expanded over the GCM
projectile basis. For a partial wave with spin J and parity�,
we have

�JM� ¼ 1

R

X
cL

½�‘j
k � YLð�RÞ�JMuJ�cL ðRÞ; (5)

where L is the relative angular momentum, and index c
stands for c ¼ ð‘; j; kÞ. The summation is truncated at a
maximum angular momentum jmax and at a maximum
pseudostate energy which limits the number of k values.
The radial wave functions uJ�cL ðRÞ are obtained from the

coupled-channel system

FIG. 1. Schematic picture of the projectile-target system, with
a microscopic cluster structure of the projectile. Coordinates R
and � are defined in the text.
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� @
2

2�

�
d2

dR2
� LðLþ 1Þ

R2

�
uJ�cL þ X

c0L0
VJ�
cL;c0L0uJ�c0L0

¼ ðE� EcÞuJ�cL ; (6)

where Ec are the projectile energies, eigenvalues of H0,
and where the coupling potentials VJ�

cL;c0L0 ðRÞ are obtained
from the matrix elements

Vcc0 ðRÞ ¼ h�‘j
k j

XAp

i¼1

Vtiðri �RÞj�‘0j0
k0 i (7)

and from additional algebraic coefficients. Equation (7)
involves one-body matrix elements between Slater deter-
minants �‘jmðSÞ, which can be computed by using the
standard formula [34]. The system (6) is then solved by
using the R-matrix method on a Lagrange mesh [35,36].
The solutions provide the scattering matrix for all (J�)
values and, consequently, various cross sections (elastic
and inelastic scattering, breakup, fusion, etc.).

The MCDCC approach presents several advantages:
(1) the projectile wave functions are fully antisymmetric,
and not limited to bound states; (2) core excitations can
be included in a straightforward way; (3) the model relies
only on nucleon-target optical potentials. These potentials
are in general well known and are independent of the
projectile. A strong predictive power of the model is there-
fore expected.

As mentioned above, our first application of the
MCDCC deals with 7Li elastic scattering on a heavy
target, which we take here to be 208Pb. Data are available
around the Coulomb barrier (Elab � 30 MeV) [37]. As the
MCDCC involves heavy numerical calculations, we illus-
trate the power of the method in a simple case, where 7Li is
described by an �þ t cluster structure. The system
involves only 0s orbitals (with an oscillator parameter b ¼
1:45 fm) and excitations of the � particle can be neglected.

The 7Li wave functions are defined from a discretization
of Eq. (3) with 20 values of the generator coordinator S,
ranging from 0.8 to 16 fm in steps of 0.8 fm. The nucleon-
nucleon interactionvij [see Eq. (1)] is taken as theMinnesota

force [32], complemented with a zero-range spin-orbit term
[38]. Using the admixture parameter u ¼ 1:011 and
the spin-orbit amplitude S0 ¼ 20:0 MeV fm5 reproduces
the experimental energies of the 3=2� ground state and
of the 1=2� first excited state simultaneously. The �þ t
wave functions involve partial waves up to jmax ¼ 7=2 (with
both parities). In addition to the 3=2� and 1=2� bound states
of 7Li, the 7=2� (Ecm¼2:18MeV) and 5=2� (Ecm¼
4:13MeV) resonances are also well-known cluster states.
Continuum states up to 20 MeV are included in the basis.
Various tests have been performed to check the stability of
the calculated cross sections against the cutoff energy. At the
scale of the figures, increasing this energy does not bring any
change in the cross sections.

The present microscopic cluster model is very similar to
those used in the past to describe the spectroscopy of 7Li, the
�þ t elastic phase shifts, and the 3Hð�;�Þ7Li cross section
[39]. In particular, the quality of the 7Liwave functions can
be assessed by electromagnetic transition probabilities and
by the quadrupole moment of the ground state. For the
BðE1; 3=2� ! 1=2�Þ value, the GCM gives 7:5 e2 fm4, in
good agreement with experiment 8:3� 0:5 e2 fm4. The
theoretical and experimental values of the ground-state
quadrupole moment are�37:0 e �mb and�40:6� 0:8 e �
mb, respectively.
The 7Li wave functions (including the pseudostates)

are then used to determine the coupling potentials (7).
The neutron-208Pb optical potential (at the neutron energy
of En ¼ Elab=7) is taken from Ref. [40], by neglecting the
spin-orbit potential. The proton-208Pb cross section at
Ep ¼ Elab=7 is virtually identical to the Rutherford cross

section [41], and the corresponding interaction involves
only the Coulomb potential.
The coupled-channel equations (6) are then solved with

the R-matrix method, as alluded to above. For high partial
waves, the number of (cL) values can be large (typically up
to 150). Owing to the large rms radius of the pseudostates
and the long-range nature of the dipole Coulomb poten-
tials, large channel radii must be used. In these conditions
the accuracy of the numerical method is a crucial issue.
Many numerical tests have been performed to check that
the cross sections, at the scale of the figures, are not
affected by the choice of the channel radius and the number
of basis functions. Typical values are 30 fm and 120,
respectively.
In Fig. 2, we present the elastic-scattering cross sections at

Elab ¼ 27 and 35 MeV. The calculations have been per-
formed by increasing the number of 7Li states. Obviously,
the single-channel approach (labeled by ‘‘1 ch’’), limited
to the 7Li ground state, is not able to reproduce the data.
At Elab ¼ 27 MeV, a slight improvement is obtained by
including the 1=2� excited state (labeled by ‘‘2 ch’’). At
both energies, however, an excellent agreement can only be
achieved by including all breakup channels up to jmax¼7=2.
This value corresponds to an angular momentum ‘max ¼ 3
for jmax ¼ 7=2� and ‘max ¼ 4 for jmax ¼ 7=2þ. The partial
wave j ¼ 7=2� is important since it contains a low-energy
resonance. Higher values of the angular momentum are
expected to be negligible. A nonmicroscopic CDCC calcu-
lation [42] requires a renormalization of the�-208Pb and the
t-208Pb optical potentials by an energy-dependent factor,
close to 0.6, which is significantly different from unity;
the corresponding cross sections are therefore strongly
affected. Our microscopic approach presents a more power-
ful predictive procedure, as it does not contain adjustable
parameters.
Our model can be further tested through the calculation

of the inelastic cross section, presented in Fig. 3. At large
angles, the nuclear contribution is important. This cross
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section is much smaller than the elastic one and is
more sensitive to the details of the wave function.
Notwithstanding that no fitting procedure has been applied,
the agreement with the data is fair. Here again, the role of
the breakup channels is not negligible. In particular, the
second excited state j ¼ 7=2�, which is a resonant state in
the continuum, slightly reduces the cross section.

This exploratory work on the 7Liþ 208Pb elastic scat-
tering shows that the MCDCC is a powerful tool for the
description of low-energy reactions involving weakly
bound nuclei, where breakup couplings are important.
It is expected to be particularly suited to the scattering
of exotic nuclei, which present low breakup thresholds,
enhancing the effect of the continuum. The model is based
on nucleon-target optical potentials only, which are avail-
able over a wide range of masses and scattering energies.
Without any renormalization factors, we have shown that
7Liþ 208Pb elastic and inelastic cross section data can be
fairly well reproduced provided that breakup channels are
properly included.

The present approach opens new perspectives in
nucleus-nucleus reaction calculations at low energies. We
concentrated here on 7Li, a well-known �� t cluster
nucleus. However, extending Eq. (2) to include core exci-
tations is quite feasible. In fact, several microscopic cluster
calculations have been performed with core excitations
(see, e.g., Ref. [43] for 11Be and Ref. [44] for 17C).
Calculations involving these exotic nuclei are much more
involved, but the model itself is identical. In addition, the
present approach can easily be extended to three-cluster
projectiles, such as the Borromean two-neutron halo
nuclei, 6He and 11Li, where RGM wave functions are
available [45,46]. Finally, other processes, such as breakup
and fusion reactions, both of great current interest, can be
described by generalizations of the present work.
This text presents research results of the IAP program
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[47] I. Martel, J. Gómez-Camacho, K. Rusek, and G. Tungate,

Nucl. Phys. A641, 188 (1998).

PRL 111, 082701 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

23 AUGUST 2013

082701-5

http://dx.doi.org/10.1103/PhysRevC.79.021601
http://dx.doi.org/10.1103/PhysRevC.79.021601
http://dx.doi.org/10.1103/PhysRevLett.110.142701
http://dx.doi.org/10.1103/PhysRevLett.110.142701
http://dx.doi.org/10.1016/j.physrep.2005.10.006
http://dx.doi.org/10.1103/PhysRevC.73.024602
http://dx.doi.org/10.1103/PhysRevC.73.024602
http://dx.doi.org/10.1103/PhysRevC.68.064609
http://dx.doi.org/10.1103/PhysRevC.79.024607
http://dx.doi.org/10.1103/PhysRevC.79.024607
http://dx.doi.org/10.1103/PhysRevC.85.054610
http://dx.doi.org/10.1103/PhysRevC.85.054610
http://dx.doi.org/10.1103/PhysRevC.9.2210
http://dx.doi.org/10.1143/PTPS.89.1
http://dx.doi.org/10.1143/PTPS.89.1
http://dx.doi.org/10.1016/0370-1573(87)90094-9
http://dx.doi.org/10.1103/PhysRevC.80.054605
http://dx.doi.org/10.1143/PTPS.196.87
http://dx.doi.org/10.1103/PhysRevC.70.061601
http://dx.doi.org/10.1103/PhysRevC.70.061601
http://dx.doi.org/10.1103/PhysRevC.77.064609
http://dx.doi.org/10.1103/PhysRevC.74.014606
http://dx.doi.org/10.1103/PhysRevC.74.014606
http://dx.doi.org/10.1140/epjst/e2008-00609-y
http://dx.doi.org/10.1140/epjst/e2008-00609-y
http://dx.doi.org/10.1103/PhysRevLett.84.5728
http://dx.doi.org/10.1103/PhysRevLett.84.5728
http://dx.doi.org/10.1103/PhysRevC.70.054325
http://dx.doi.org/10.1103/PhysRevC.70.054325
http://dx.doi.org/10.1103/PhysRevLett.101.092501
http://dx.doi.org/10.1103/PhysRevLett.101.092501
http://dx.doi.org/10.1103/PhysRevLett.99.022502
http://dx.doi.org/10.1143/PTPS.62.90
http://dx.doi.org/10.1016/0370-1573(78)90175-8
http://dx.doi.org/10.1016/0370-1573(78)90175-8
http://dx.doi.org/10.1016/0375-9474(95)00409-2
http://dx.doi.org/10.1088/0034-4885/73/3/036301
http://dx.doi.org/10.1088/0034-4885/73/3/036301
http://dx.doi.org/10.1016/j.nuclphysa.2010.05.060
http://dx.doi.org/10.1016/0375-9474(96)00172-8
http://dx.doi.org/10.1016/0375-9474(86)90428-8
http://dx.doi.org/10.1103/PhysRevC.44.2006
http://dx.doi.org/10.1103/PhysRevC.44.2006
http://dx.doi.org/10.1016/S0375-9474(02)01321-0
http://dx.doi.org/10.1016/S0375-9474(02)01321-0
http://dx.doi.org/10.1103/PhysRevC.78.021601
http://dx.doi.org/10.1103/PhysRevC.78.021601
http://dx.doi.org/10.1016/S0375-9474(97)00015-8
http://dx.doi.org/10.1103/PhysRevC.81.051301
http://dx.doi.org/10.1103/PhysRevC.81.051301
http://dx.doi.org/10.1103/PhysRevC.80.044310
http://dx.doi.org/10.1103/PhysRevC.80.044310
http://dx.doi.org/10.1016/S0375-9474(97)00504-6
http://dx.doi.org/10.1016/S0375-9474(98)00455-2

