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We formulate lattice QCD in rotating frames to study the physics of QCD matter under rotation. We

construct the lattice QCD action with the rotational metric and apply it to the Monte Carlo simulation. As

the first application, we calculate the angular momenta of gluons and quarks in the rotating QCD vacuum.

This new framework is useful to analyze various rotation-related phenomena in QCD.
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Introduction.—Quantum chromodynamics (QCD), the
fundamental theory of the strong interaction, has resulted
in incredibly diverse phenomena. Among them, QCDmatter
under rotation is of particular interest. For example, the cores
of rapidly rotating compact stars are expected to be in the
superfluid or superconducting phase and are threaded with
topological vortices [1], whichmay play an important role in
pulsar glitches [2]. In ultrarelativistic heavy-ion collisions
performed at the BNL Relativistic Heavy Ion Collider
(RHIC) or CERNLarge Hadron Collider (LHC), the created
quark-gluon plasma should have a finite angularmomentum,
especially in off-central collisions. This would result in
interesting phenomena such as the chiral vortical effect [3]
or the Kelvin-Helmholtz instability [4]. Also in low-energy
nuclear physics, rotation generates characteristic states of the
nucleus, e.g., rotationalmodes and high-spin states [5]. Thus,
the analysis of the QCDmatter under a rotating environment
is an important phenomenological problem.

However, first-principles calculations for the rotating
QCD matter have been elusive. In numerical simulations
under equilibrium conditions, such as the lattice QCD
simulation, it is not straightforward to generate a rotating
state. The rotating state cannot be realized by adding
external fields, since the circulating velocity field, which
characterizes the rotation, is the matter field itself. One
possible way is to rotate the reference frame. A rest state in
a rotating frame is equivalent to a rotating state in a rest
frame. By performing the simulation in the rotating frame,
we can study the properties of the rotating matter. In
condensed matter physics, the simulation in the rotating
frame is successful in the analysis of rotating Bose-
Einstein condensates, in which interesting phenomena
such as vortex nucleation and the formation of a vortex
lattice are simulated [6].

In this Letter, we formulate lattice QCD in rotating
frames. From a phenomenological viewpoint, this frame-
work opens a new possibility to theoretical studies of QCD.
As mentioned above, there are many important rotation-
related phenomena in hadron and nuclear physics. Once
this framework is formulated, we can tackle them by the

first-principles calculation of QCD. From a theoretical
viewpoint, this is one practical application of lattice
QCD in a curved space-time, i.e., in general relativity.
Lattice QCD in moving frames has been discussed only
in the case of the Lorentz boost, i.e., in special relativity
[7]. Lattice gauge theory in a curved space-time has been
discussed in the context of lattice quantum gravity [8].
In the continuum.—In the standard lattice QCD simula-

tion, we numerically perform the path integral with the
Euclidean metric gij ¼ diagð1; 1; 1; 1Þ. To formulate rota-

tion in the Euclidean space-time, we need two operations:
the Wick rotation � ¼ �it and the spatial rotation � ¼
�rest ��t. There are two possibilities for the order
of these two operations: the ‘‘Minkowskian’’ rotation� ¼
�@�=@t, which is defined as the spatial rotation before
the Wick rotation, and the ‘‘Euclidean’’ rotation � ¼
�@�=@�, which is defined as the spatial rotation after the
Wick rotation. As is shown below, there is the sign problem
in the Minkowskian rotation and no sign problem in the
Euclidean rotation. (This is similar to the case of external
electric fields. There is the sign problem in the
Minkowskian electric field Ej ¼ @Aj=@t� @A0=@x

j and

no sign problem in the Euclidean electric field Ej ¼
@Aj=@�� @A4=@x

j [9].) As long as the analytic continu-

ation to the original Minkowski space-time is validated,
these two rotations produce the same end result. In this
Letter, we apply the Euclidean rotation to the lattice QCD
simulation. In the following equations, the angular velocity
of the Euclidean rotation is denoted by�. The correspond-
ing equations with the Minkowskian rotation are obtained
by replacing � ! i�.
We choose the Cartesian coordinate x� ¼ ðx; y; z; �Þ and

perform the coordinate transformation to a rotating frame
in the Euclidean space-time. The spatial coordinates in the
rest and rotating frames are connected by the relation
dxirest ¼ dxi � �ijk�jxkd�, where�j is the angular veloc-

ity vector [10]. By plugging this into the line element in the
rest frame, ds2 ¼ d�2 þ d~x2rest, we can read off the metric
in the rotating frame as
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g�� ¼

1 0 0 y�

0 1 0 �x�

0 0 1 0

y� �x� 0 1þ r2�2

0
BBBBB@

1
CCCCCA; (1)

where we chose the z axis as the rotation axis,�j ¼ �jz�,

and r � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is the distance from the rotation axis. In

the rotating frame, an observer feels the local Lorentz

boost with the Lorentz factor 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2�2

p
. In the

Minkowskian rotation, for a well-defined coordinate patch,
we must impose the condition r�< 1 ¼ c (the light ve-
locity), which means that the local velocity must be smaller
than the light velocity. In the Euclidean rotation, there is no
such coordinate singularity, but the local velocity should be
small for the analytic continuation.

We start with the gluon and quark actions in a general
curved space-time,

SG ¼
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detg��

q 1

2g2YM
g��g	
trF�	F�
; (2)

SF ¼
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detg��

q
�c ½��ðD� � ��Þ þm�c : (3)

The covariant Dirac operator is constructed from the
SUðNcÞ covariant derivative D� ¼ @� � iA� and the

spinor affine connection ��. The connection is defined as

�� ¼ � i

4

ij!�ij; (4)


ij ¼ i

2
ð�i�j � �j�iÞ; (5)

!�ij ¼ g��e
�
i ð@�e�j þ ��

��e�j Þ; (6)

where e
�
i is the vierbein and �

�
�� is the Christoffel symbol.

The greek and latin indices refer to the coordinate and
tangent spaces, respectively.

By substituting the rotational metric (1), the gluon
action is

SG ¼
Z

d4x
1

g2YM
tr½ð1þ r2�2ÞFxyFxy þ ð1þ y2�2ÞFxzFxz

þ ð1þ x2�2ÞFyzFyz þFx�Fx� þFy�Fy� þFz�Fz�

þ 2y�FxyFy� � 2x�FyxFx� þ 2y�FxzFz�

� 2x�FyzFz� þ 2xy�2FxzFzy�: (7)

As an effect of rotation, the gluon action includes the Oð�Þ
terms which break parity and time-reversal symmetry and

the Oð�2Þ terms which do not break them. The covariant
Dirac operator depends on the choice of the vierbein. We
choose the vierbein

ex1 ¼ ey2 ¼ ez3 ¼ e�4 ¼ 1; (8)

ex4 ¼ �y�; ey4 ¼ x�; (9)

and e�i ¼ 0 for other components. In this choice, the quark
action is

SF ¼
Z

d4x �c

�
�xDx þ �yDy þ �zDz

þ ��

�
D� þ i�


12

2

�
þm

�
c : (10)

The gamma matrices in the rotating frame are given as
�� ¼ �ie

�
i , i.e.,

�x ¼ �1 � y��4; (11)

�y ¼ �2 þ x��4; (12)

�z ¼ �3; (13)

�� ¼ �4: (14)

As a result of rotation, the Dirac operator includes the
orbit-rotation coupling term ���ðxDy � yDxÞ and the

spin-rotation coupling term i���
12=2.
On the lattice.—We discretize the continuum actions (7)

and (10) on the hypercubic lattice. The schematic figure is
shown in Fig. 1. The lattice spacing is a and the total
number of the lattice sites is Nx � Ny � Nz � N�. The

lattice is rotated around the z axis. In the x and y directions,
we take the Dirichlet boundary conditions. In the z and �
directions, we take boundary conditions in the same man-
ner as the usual lattice simulation.
On the lattice, the gluon field strength is constructed

from the gauge invariant loops of the link variables U�ðxÞ.
The squared terms, e.g., FxyFxy, are constructed from

the ‘‘plaquette,’’ and the nonsquared terms, e.g., FxyFy�,

are constructed from the ‘‘chair-type’’ loop [11]. The
lattice gluon action is

y x

a

z

Ω

FIG. 1 (color online). Rotating lattice.
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SG ¼ X
x

�

�
ð1þ r2�2Þ

�
1� 1

Nc

Re tr �Uxy

�
þ ð1þ y2�2Þ

�
1� 1

Nc

Re tr �Uxz

�
þ ð1þ x2�2Þ

�
1� 1

Nc

Re tr �Uyz

�

þ 3� 1

Nc

Re trð �Ux� þ �Uy� þ �Uz�Þ � 1

Nc

Re trðy� �Vxy� � x� �Vyx� þ y� �Vxz� � x� �Vyz� þ xy�2 �VxzyÞ
�
: (15)

The bare lattice coupling is � ¼ 2Nc=g
2
YM. For a local

definition of the lattice field strength, we take the clover-
type average of four plaquettes as

In a flat space-time, this average is redundant because it
can be absorbed into the summation

P
x in the action.

However, in a curved space-time, this average is important
because the coefficients depend on the space-time coordi-
nate. Similarly, we take the (anti)symmetric average of
eight chair-type loops as

For the lattice quark action, we adopt the Wilson fermion
with the gamma matrices in the rotating frame. The spin-
rotation coupling term is exponentiated as a chemical
potential [12]. The lattice quark action is

SF ¼ X
x1;x2

�c ðx1Þ
�
�x1;x2 � �

�
ð1� �xÞTxþ þ ð1þ �xÞTx�

þ ð1� �yÞTyþ þ ð1þ �yÞTy� þ ð1� �zÞTzþ

þ ð1þ �zÞTz� þ ð1� ��Þ exp
�
ia�


12

2

�
T�þ

þ ð1þ ��Þ exp
�
�ia�


12

2

�
T��

��
c ðx2Þ; (18)

with T�þ � U�ðx1Þ�x1þ�̂;x2 and T�� � Uy
�ðx2Þ�x1��̂;x2 .

The bare hopping parameter is � ¼ 1=ð2amþ 8Þ. In the
continuum limit a ! 0, the lattice actions (15) and (18)
correspond to the continuum actions (7) and (10),
respectively.

In the Minkowskian rotation, the angular velocity is
replaced as � ! i�. In the gluon action (15), the Oð�Þ
terms become pure imaginary numbers. In the quark
action (18), the orbit-rotation coupling term becomes like
an imaginary hopping term and the spin-rotation coupling
term becomes like a chemical potential. Since both of the
gluon and quark actions become complex, the Monte Carlo
simulation severely suffers from the sign problem. On the

other hand, in the Euclidean rotation, the gluon and quark
actions are real, and thus there is no sign problem.
We have formulated the hypercubic lattice, which is

commonly used in most lattice simulations. It is possible
to formulate the cylindrical lattice in the cylindrical coor-
dinate x� ¼ ðr; �; z; �Þ. An advantage of the cylindrical
lattice is better rotational symmetry around the rotation
axis. However, since the action includes a singular metric
factor 1=r, the region around the rotation axis must be
removed to avoid this apparent singularity.
The angular velocity � might affect the renormaliza-

tion, e.g., the physical scale. This correction cannot be
neglected when the angular velocity is large. However, it
is not trivial how to determine the physical scale in rotating
frames. Moreover, since the Lorentz symmetry and trans-
lational invariance are broken, the isotropy and the coor-
dinate independence are no longer assured at the full
quantum level. (This is similar to the anisotropic lattice
[13] and the coordinate-dependent lattice coupling [14].)
In the following numerical simulation, we restrict the
angular velocity only to small values, and do not discuss
the problem of the renormalization.
Simulation.—We performed the quenched SU(3)

Monte Carlo simulation. The lattice size is Nx � Ny �
Nz � N� ¼ 13� 13� 12� 12. The range of the x-y
plane is x ¼ ½�6a; 6a� and y ¼ ½�6a; 6a�, and the posi-
tion of the rotation axis is ðx; yÞ ¼ ð0; 0Þ. We set the bare
lattice coupling � ¼ 5:9, and the bare hopping parameter
is � ¼ 0:1583, where the lattice spacing is a ’ 0:10 fm
and the meson mass ratio is m=m	 ’ 0:59 [15].

We analyze the angular momentum of the rotating QCD
vacuum. Rotation induces a finite vacuum expectation
value of the angular momentum operator. To understand
the reason, let us recall a rotating classical particle.
The classical Lagrangian is L ¼ mr2 _�2rest=2 ¼
mr2ð _�þ�Þ2=2, and it has a minimum at _� ¼ ��.
The classical solution has a finite angular momentum
J ¼ mr2 _� ¼ �mr2� in the rotating frame. The negative
sign means that the rest particle seems oppositely rotating
from the rotating frame. Similarly, in QCD, we can observe
the rotating state with a finite angular momentum by gen-
erating the vacuum in a rotating frame.
We take the expectation value in the rotating vacuum,

J ¼ hĴi��0; (19)

of the angular momentum density operator

Ĵ � @L
@�

���������¼0
; (20)
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where L is the Lagrangian density. This angular momen-
tum density operator coincides with the conserved Noether
current in the flat space-time. The gluon angular momen-
tum density is

JG ¼
	

1

g2YM
tr½2yFxyFy� � 2xFyxFx�

þ 2yFxzFz� � 2xFyzFz��


: (21)

The fermion angular momentum density is decomposed
into the orbital and spin angular momentum densities,

JF ¼ JFL þ JFS; (22)

JFL ¼ h �c��ðxDy � yDxÞc i; (23)

JFS ¼
	
i �c�� 


12

2
c



: (24)

We discretize these operators in the same way as the lattice
actions (15) and (18).

In Fig. 2, we show the angular momentum density along
the x axis (y ¼ 0). The angular velocity is fixed at a non-
zero value a� ¼ 0:06. As for JG and JFL, the angular
momentum density is a quadratic function of the distance
from the rotation axis. The spin angular momentum density
JFS is small but nonzero, and it is independent of the
distance. In Fig. 3, we show the angular momentum density
measured at a certain point, ðx; yÞ ¼ ð2a; 0Þ, as a function
of the angular velocity�. The angular momentum density
increases linearly. From fitting the data,

JG ¼ �ð0:94� 0:01Þa�4 � r2�; (25)

JFL ¼ �ð0:60� 0:01Þa�4 � r2�; (26)

JFS ¼ �ð0:17� 0:01Þa�2 ��: (27)

The coefficient in front of � is interpreted as the moment
of inertia of the constituent in the QCD vacuum. The
functional form of JG and JFL can be intuitively under-
stood from the angular momentum of a classical particle,
J ¼ �mr2�. The numerical coefficients of JG and JFL are
interpreted as the inertial mass densities of glueballs and
quark-antiquark pairs, respectively. The r independence of
JFS is a plausible result since the spin is an intrinsic angular
momentum. Note that these coefficients are unrenormal-
ized and they depend on the renormalization scale and the
quark mass.
Summary.—We have formulated lattice QCD in rotating

frames. We have carried out its first Monte Carlo simula-
tion to analyze the angular momentum of the rotating QCD
vacuum. At least in the case of the Euclidean rotation, we
can implement this framework without technical difficulty.
By using this framework, we can study the rotating matter
from first-principles. There are many possible applications
for QCD phenomenology, e.g., rotating hadrons, heavy-ion
collisions, and rapidly rotating compact stars. Moreover,
this kind of simulation will be possible not only in QCD
but also in other field theories.
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