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The question of how irreversibility can emerge as a generic phenomenon when the underlying

mechanical theory is reversible has been a long-standing fundamental problem for both classical and

quantum mechanics. We describe a mechanism for the appearance of irreversibility that applies to

coherent, isolated systems in a pure quantum state. This equilibration mechanism requires only an

assumption of sufficiently complex internal dynamics and natural information-theoretic constraints arising

from the infeasibility of collecting an astronomical amount of measurement data. Remarkably, we are able

to prove that irreversibility can be understood as typical without assuming decoherence or restricting to

coarse-grained observables, and hence occurs under distinct conditions and time scales from those implied

by the usual decoherence point of view. We illustrate the effect numerically in several model systems and

prove that the effect is typical under the standard random-matrix conjecture for complex quantum

systems.

DOI: 10.1103/PhysRevLett.111.080403 PACS numbers: 05.30.�d, 03.67.�a, 05.45.Mt

There has been considerable recent interest in the suffi-
cient conditions for equilibration [1–15]. These approaches
normally assume a decoherence mechanism resulting from
the entanglement between the system of interest and a
larger environment, or else assume highly coarse-grained
observables. In this work we describe a mechanism for
equilibration that applies to isolated quantum systems in
pure states, without assuming decoherence, restricting to
subsystems, time averaging or coarse graining the observ-
ables. The mechanism for equilibration that we describe is
an information-theoretic one that requires an assumption of
complex internal dynamics coupled with realistic limita-
tions to predicting the detailed evolution of the system and
the experimental infeasibility of collecting an astronom-
ically large amount of measurement data. This approach
builds on earlier arguments by Peres [16] and Srednicki
[17,18] who proposed that the statistical complexity of the
system’s eigenvectors could be responsible for equilibra-
tion in isolated quantum systems. We show that these
conditions are sufficient to account for the effective
(microcanonical) equilibration of the measurement statis-
tics for natural choices of (even nondegenerate) observ-
ables, meaning that, after a finite equilibration time, the
dynamical state becomes effectively indistinguishable
from the microcanonical state. Hence, information-
theoretic equilibration (ITE) accounts for microcanonical
equilibration in a way that is directly analogous to how
classical chaos (mixing) accounts for the microcanonical
equilibration of classically chaotic systems [19,20].
Remarkably, we are able to prove that ITE is universal
for complex systems under the standard random-matrix

conjecture [21,22]. Specifically, we prove that
information-theoretic equilibration occurs with high
probability for individual Hamiltonians drawn from two
physically relevant ensembles: the Gaussian unitary en-
semble (GUE), which has a successful history of predicting
universal features of complex quantum systems [21], and a
random local Hamiltonian (RLH) ensemble consisting of
many-body systems restricted to two-body interactions.
We then illustrate ITE numerically in some surprisingly
simple examples of Hamiltonian models under natural
choices of (maximally fine-grained) observables: a two-
field variant of the many-body Heisenberg Hamiltonian as
well as the quantum kicked top [22], which is a single-
body, classically chaotic system.
Consider a pure state evolving under a Hamiltonian H,

�ðtÞ ¼ expð�iHt=@Þjc ð0Þihc ð0Þj expðiHt=@Þ. The dy-
namical state �ðtÞ cannot reach the true equilibrium
state �1 :¼ lim�!1ð1=�Þ

R
�
0 �ðtÞdt [1,13] because the

state remains pure. In particular, the trace distance k�ðtÞ �
�1k , which characterizes the distinguishability under an
optimal choice of measurement operator, can be large
throughout the evolution. However, for a given complex
system H in a large Hilbert space, even a suboptimal
measurement that enables distinguishability of these two
states at any time t may neither be known theoretically nor
easily engineered experimentally. For example, for a cubic
lattice of dipolarly coupled spins, which is an analytically
intractable system that has been probed experimentally for
decades, only recently was a measurement procedure
devised that revealed long-lived (multiple-quantum) coher-
ence after equilibration of the free-induction decay [23].
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Conceptually then we see that the appearance of equilibra-
tion can and does result from insufficient knowledge of, or
control over, the choice of observable. Our contribution is
to characterize and illustrate conditions under which the
signatures of purity and coherence are provably ‘‘lost in
Hilbert space,’’ and hence unobservable due to realistic
limitations on both theoretical and experimental abilities.

We remark that our assumptions are conceptually simi-
lar and yet distinct from those of the usual decoherence
argument, in which a system coupled to a reservoir appears
to reach equilibrium (due to entanglement between the
system and reservoir) although the joint state of the system
plus reservoir remains pure. That conclusion holds only if
one assumes that one cannot predict or perform the kind of
(entangling) measurement across the combined system
plus reservoir that would readily distinguish the actual
state from the equilibrium one; that is, the argument goes
through by restricting the set of observables to local ones.
In contrast, our observation is that information-theoretic
limitations alone are sufficient to account for the appear-
ance of equilibration for accessible observables on com-
plex systems and so, contrary to the usual assumption (see
[1,24,25]), decoherence from a reservoir is not necessary
from an explanatory point of view. More practically,
whereas the time scale for equilibration under decoherence
depends on the strength of the coupling to the reservoir, our
mechanism does not and predicts equilibration on a dis-
tinct, and potentially shorter, time scale. Furthermore, our
approach is a natural quantum analog of classical micro-
canonical equilibration [19,20].

We consider a quantum system with some kinematically
accessible Hilbert space that is finite dimensional H ¼
CD. In order to show that we do not require coarse grain-
ing, we consider a maximally fine-grained (i.e., nondegen-

erate) observable A acting on H , where A ¼ P
D
k¼1 akP̂k

with rank-one orthogonal projectors P̂k. Our argument
applies also to local or other coarse-grained observables
(which can be represented by degeneracies). For simplicity
of analysis we consider the (most adversarial) setting
where the system starts in a pure state that is maximally
localized with respect to A, i.e., �0 ¼ jaiihaij, and then
examine how the pure states spread out over the eigenbasis
of A under a time evolution given a Hamiltonian H. The
empirical question of whether the system appears to
approach (microcanonical) equilibrium given some
observable A corresponds to asking whether the experi-
mental measurement statistics for the evolved pure state
can be distinguished from those of the equilibrium state.
Hence, the relevant quantities for this task are the proba-
bilities over distinct outcomes k,

Pr ðkj�ðtÞÞ ¼ Tr½P̂kUðtÞ�0U
yðtÞ�; (1)

and the goal is to distinguish �ðtÞ from �1 by sampling the
distribution in Eq. (1). For simplicity we focus on cases
where �1 ¼ 1=D, but �1 may differ from the micro-
canonical state �mc :¼ 1=D or any thermal state [3].

Definition 1.—A Hamiltonian H acting on H ¼ CD

exhibits ITE with respect to an observable A at a time t,
if the outcome distribution Pr ðkj�ðtÞÞ can only be distin-
guished from the microcanonical distribution PrmcðkÞ with
probability at least 1�Oð1=polyðDÞÞ by (a) taking a num-
ber of samples from Pr ðkj�ðtÞÞ that scales at least as
OðpolyðDÞÞ or (b) performing any information processing
that requires at least OðpolyðDÞÞ arithmetic or logical
operations.
This definition emphasizes that although the exact quan-

tum distribution for the system may be, in principle, dis-
tinguishable from the microcanonical distribution, the two
are effectively indistinguishable if the resources needed to
distinguish them exceed those practically available. We
delineate the practical from the impractical by disallowing
resources (the number of measurements taken and compu-
tational time used in their analysis) that grow polynomially
with the Hilbert space dimension (and hence exponentially
with the number of subsystems). Of course, for a different
physical scenario, a different cutoff may be appropriate.
Our condition (b) includes a restriction on computational
resources because the two distributions could be distin-
guished using fewer samples if the Pr ðkj�ðtÞÞ can be
precomputed. In other words, information-theoretic equili-
bration is relevant precisely when the system is in a suffi-
ciently large Hilbert space that such a precomputation is
infeasible. We represent our ignorance of Pr ðkj�ðtÞÞ by
assuming that it is drawn from a distribution that is invari-
ant under permutations of outcome labels. We now show in
the following theorem that, without the ability to efficiently
predict Pr ðkj�ðtÞÞ, ITE with respect to a particular mea-
surement occurs when the outcome variance,

V kfPrðkÞg :¼ D�1
XD�1

k¼0

½PrðkÞ �D�1�2; (2)

is sufficiently small, which is typical of cases where the
underlying dynamics has no constants of motion. Proof is
provided in the Supplemental Material [26].
Theorem 1.—Consider an unknown distribution that is

promised to be with equal probability either (a) the uniform
distribution on the set S ¼ f1; . . . ;Mg or (b) an unknown
distribution PðkÞ that is drawn from a distribution over
probability distributions on S with outcome variances
that scale as OðM�2Þ such that Pr ðPðkÞÞ is invariant with
respect to permutations of S. With high probability, the
probability of correctly distinguishing between (a) and (b)

after obtaining N samples is at most 1=2þOðN=M1=4Þ.
Theorem 1 shows thatN � OðM1=4Þ samples are needed

to distinguish the distributions with probability substan-
tially greater than 1=2, which is prohibitively expensive in
the case of a nondegenerate projective measurement
because M ¼ D. Similarly, if we consider a generalized
measurement with M>D (as is relevant in the case of
symmetric informationally complete positive operator
valued measures), Theorem 1 similarly shows that
distinguishing the distributions is hard. Finally, it is
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straightforward to show that coarse-grained measurements
with M<D do not provide an advantage under the as-
sumptions of Theorem 1 because the permutation invari-
ance of the prior distribution over PrðkÞ prevents such
strategies from succeeding with high probability. Another
consideration is that VkfPrðkÞg ¼ OðM�2Þ does not imply
that the fluctuations are negligible, in principle; in fact, it is
consistent with k Pr ðkj�ðtÞÞ� 1=M k1 being constant,
which implies that an optimal measurement exists that
can distinguish the two distributions efficiently [27].
Hence, Theorem 1 is only meant to give a hardness result
for distinguishing two states given the induced distribu-
tions with respect to a fixed measurement, and does not
apply to cases where the optimal measurement is both
known a priori and experimentally accessible. Indeed the
exceptions to our assumptions are relevant, e.g., when the
system admits constants of the motion that are simple
relative to the selected observable.

Which Hamiltonian systems satisfy the assumptions of
Theorem 1 for natural choices of A, and hence exhibit
information-theoretic equilibration? Pure-state fluctuations
satisfying the scaling of Theorem 1 were observed already
in the two-body, classically chaotic quantum system
studied in Refs. [28,29], which motivated the question:
Was the behavior of that complex system exceptional, or
was it evidence of a universal equilibration behavior for
closed chaotic systems? If the latter, does this effect carry
over from chaotic quantum systems to sufficiently complex
many-body quantum systems?

To answer these questions, we take the enormously
successful approach of Wigner and Dyson and the army
of theoretical physicists following them who have demon-
strated that certain features of appropriate random-matrix
ensembles can predict typical properties of complex quan-
tum systems. This is known as the random-matrix conjec-
ture, and it has provided accurate predictions of the
spectral properties of heavy nuclei [21], spectral and eigen-
vectors statistics of quantum chaos models [30,31], and
quantum transport in mesoscopic structures [32]. Consider
any ensemble that has a mean that equilibrates information
theoretically with respect to A and is sufficiently sharply
peaked about that mean; then individual systems from the
ensemble will satisfy Theorem 1 with (very) high proba-
bility. This phenomenon, known as concentration of mea-
sure, is central to the random-matrix conjecture, and it is
important to note that our averages over the ensemble are
not an implicit appeal to decoherence or mixing, but a
method for estimating the typical properties of individual
systems within the ensemble.

The system must be allowed to evolve for a sufficient
amount of time for the state to spread out from a distribu-
tion with support on initial eigenstate of A to one that obeys
Pr ðkj�ðtÞÞ � 1=D for our result to hold (see Fig. 1). We
refer to the earliest such time as the equilibration time,
which we denote teq. For an individual system, we also

require that for most t � teq that Prðkj�ðtÞÞ is nearly

maximally spread out. If the Hamiltonian is drawn from
an ensemble, it is then possible to define an equilibration
time such that almost all Hamiltonians drawn from the
ensemble achieve ITE with respect to A and t � teq:

Lemma 1.—Almost all Hamiltonians sampled from an
ensemble of Hamiltonians equilibrate information theo-
retically with respect to a fixed observable A and time
t > teq, in the limit as D ! 1, if the ensemble average

and variance (denoted EEH
and VEH

, respectively) of the

outcome variance obey for all t � teq,

E EH
½VkfPr ðkj�ðtÞÞg� � OðD�2Þ; (3)

V EH
½VkfPr ðkj�ðtÞÞg� � OðD�4Þ: (4)

Proof is given in the Supplemental Material [26].
We now give our first evidence for universality by

proving that ITE is typical for the important GUE, which
defines an invariant measure on the set of Hamiltonians.
The GUE is the appropriate model, a highly successful
model for many properties of complex physical systems
with no hidden symmetries [21].
Theorem 2.—Take a nondegenerate observable A acting

onH ¼ CD, and an initial pure state �0 ¼ jxihxjwhich is
an eigenstate of A. Almost all Hamiltonians drawn from
GUE then equilibrate information theoretically with
respect to A and t � teq in the limit as D ! 1 for

teqðDÞ ¼ OðD�1=6Þ.
The proof is in the Supplemental Material [26]. This

theorem implies the remarkable result that, as D increases,
the overwhelming majority of Hamiltonians will cause an
initially pure, localized state to spread out over the non-
degenerate eigenbasis of A in a sufficiently uniform man-
ner, to become practically indistinguishable from the
microcanonical state for any t � teq. Thanks to decades

of numerical studies of GUE as a model of complex many-
body systems [32] and few-body quantum chaos systems
[22], it is known that GUE is a good predictor of short-
range spectral fluctuations [33], and low-order moments of
eigenvector components [30,31], but not a good predictor
of long-range spectral fluctuations [22]. Our proof of the
smallness of the fluctuations using GUE (for t > teq)

FIG. 1 (color). We plot Pr ðkj�ðtÞÞ for Pauli-Z measurements
given by quantum theory (blue) and the uniform distribution
(red) for a random local Hamiltonian acting on 10 qubits at t ¼ 0
and for t > teq. ITE arises from the difficulty in distinguishing

quantum fluctuations from sampling errors for t > teq.
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depends only on low-order moments of the eigenvector
components, i.e., a unitary t-design condition with
t ¼ 8 [34] (see Supplemental Material for details [26]).
Hence, we expect this aspect of the GUE model to be
reflected in physically relevant Hamiltonian systems.
However, we do not expect the GUE prediction for the
equilibration time scale to be physically relevant (clearly
the value of teq for GUE is unrealistically short) because it

depends on long-range spectral fluctuations. We now con-
firm both of these expectations for two random-matrix
ensembles consisting of many-body spins with two-body
interactions, and conclude by demonstrating ITE with
respect to tensor product measurements on a physically
relevant time scale in some example model systems.

We construct an ensemble of RLH on n spins, consisting
of two-body interactions between two-level quantum
systems, as follows:

H ¼kHk�1

�Xn
i¼1

X
p

ai;p�
ðiÞ
p þX

i<j

X
p;p0

bi;j;p;p0�ðiÞ
p �ðjÞ

p0

�
;

where p, p0 2 fX; Y; Zg, and each ai;p and bi;j;p;p0 is a

Gaussian random variable with mean 0 and variance 1.
We consider the observable A ¼ P

D�1
j¼0 ajjjihjj, corre-

sponding to a nondegenerate projective measurement in
the eigenbasis of ��n

z . RLH is clearly invariant under the
permutation of qubit labels and local rotations of each qubit,
and therefore our results also apply to any A0 that differs
from A by local rotations. Figure 2 shows that pure states
evolving under individual elements of RLH approach equi-
librium as D increases. We estimate the equilibration time
using the location of the inflection points of the curves in
Fig. 2, and find it scales as Oð logðDÞÞ, which is character-
istic of quantum chaotic systems [22,28,29]. Figure 3 shows
that the outcome variance for a typical Hamiltonian chosen
uniformly from the RLH ensemble satisfies the require-
ments of Lemma 1, which implies that almost all RLH
Hamiltonians will equilibrate information theoretically

with respect to any nondegenerate measurement in the class
A0 as D ! 1 for any t � teq. We further strengthen the

physical relevance of this result by showing that ITE still
holds for t � teq when the two-local Hamiltonians are con-

strained to have nearest-neighbor interactions in one and
two dimensions (see Supplemental Material [26]).
We now give two simple examples of individual model

systems that exhibit information-theoretic equilibration: a
many-body system that is a two-field variant of the
Heisenberg Hamiltonian and a one-body chaotic model,
the quantum kicked top. The two-field variant of the
Heisenberg mode consists of n spins arranged in a line
with periodic boundary conditions:

H ¼ 1

kHk
� X
i�n=2

�ðiÞ
z þ X

i>n=2

�ðiÞ
x þX

i

~�ðiÞ � ~�ðiþ1Þ
�
: (5)

We choose this Hamiltonian because it is highly structured
local Hamiltonian that is not typical of RLH and yet it is
unstructured enough to be nonintegrable so there are no
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FIG. 2 (color). The RLH ensemble average of the probabilities
Prðk � 0je�iHtj0ih0jeiHtÞ of the evolved state for 250 random
Hamiltonians plotted as a function of time for 5,. . .,10 qubit
systems. The circles show teq for each n, which scale roughly as

Oð logðDÞÞ.
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FIG. 3 (color online). Numerically computed expectation val-
ues and variances over the RLH ensemble of the outcome
variance computed at t ¼ 10 where teq & 2 for �ð0Þ ¼ j0ih0j.
The data were obtained for 250 randomly chosen
Hamiltonians, and show that VEH

½VkfPr ðkj�ðtÞÞg� � 0:05D�4

and EEH
½VkfPr ðkj�ðtÞÞg� � D�2.
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FIG. 4 (color online). Evidence of ITE for t � teq in an ex-
tremely simple many-body system with nearest-neighbor
interactions for increasing number of spins n (D ¼ 2n).
The measurement consists of readout of each spin along the
z axis. The plot shows VkfPr ðkj�ðtÞÞg � 1:6D�2 for the
Hamiltonian, Eq. (5), with t ¼ 20 where teq ’ 15 (see

Supplemental Material [26]).
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constants of motion that prevent equilibration on the full
Hilbert space (otherwise ITE would be limited to the
invariant subspaces fixed by the constants of motion).
Figure 4 shows that the outcome variance of the probability
distribution indeed scales as OðD�2Þ with respect to A ¼P

D�1
j¼0 ajjjihjj, corresponding to a readout of all spins in the

computational basis. Hence, Theorem 1 implies that
information-theoretic equilibration occurs for this simple
many-body Hamiltonian with respect to a natural observ-
able. This is evidence that our equilibration mechanism is
not just a mathematical feature of random Hamiltonian
ensembles but occurs also in a simple, physically acces-
sible many-body model. We also demonstrate ITE for the
quantum kicked top in a regime of global chaos with
respect to nondegenerate measurements in the Jz basis
(see Supplemental Material [26]) and physically accessible
times.

Conclusion.—We have demonstrated a novel mechanism
for equilibration that holds very broadly for the probability
distributions of evenmaximally fine-grainedmeasurements
on pure quantum states of closed Hamiltonian systems.
Remarkably, this information-theoretic equilibration is
observed to holdwithout requiring any formof decoherence
or restricting to local or otherwise coarse-grained measure-
ments. This is because, in the typical case of a complex
system, the dynamical pure-state quantum fluctuations,
though finite, do not lead to a breakdown of correspondence
with the equilibrium state (contrary to a common implicit
assumption, see Refs. [1,24,25]) because they become
unobservably small under purely statistical considerations
(in the limit of large D) after the equilibration time scale.
Our key insight is that although dynamical pure states of
complex systems exhibit coherent fluctuations away from
true microcanonical equilibrium, their detection in practice
requires extraordinary experimental resources, such as col-

lectingOðD1=4Þmeasurement outcomes from repetitions of
the experiment, or precomputation of the location of the
dynamical state in a D-dimensional Hilbert space, or per-
forming joint (entangling) measurements on identical cop-
ies of the system. In the absence of such resources, by
Theorem 1 we see that after some finite time, the empirical
probability distributions for dynamical pure states of com-
plex quantum systems cannot be distinguished from the
microcanonical equilibrium state.
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