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We study the distribution of particle number in extended subsystems of a one-dimensional non-

interacting Fermi gas confined in a potential well at zero temperature. Universal features are identified in

the scaled bulk and edge regions of the trapped gas where the full counting statistics are given by the

corresponding limits of the eigenvalue statistics in Gaussian unitary random matrix ensembles. The

universal limiting behavior is confirmed by the bulk and edge scaling of the particle number fluctuations

and the entanglement entropy.
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The techniques for the manipulation of ultracold atomic
gases have undergone a rapid development in the last
decade and have provided experimental access to various
interesting aspects of many-body quantum systems [1,2].
The common feature in the experiments is the presence of
trapping potentials that can be tuned to confine particles
into effective one-dimensional geometries [3–5], and theo-
retical predictions on various properties of 1D quantum
gases [6–8] can directly be tested.

The strongly correlated phases of 1D quantum gases are
characterized by the simultaneous presence of thermal and
quantum noise. At ultralow temperatures, the dominating
quantum noise reveals important information on the non-
local character of correlations in the corresponding many-
body states. In particular, 1D Bose liquids can be probed by
measuring the full distribution of interference amplitude in
experiments [9], showing remarkable agreement with the
predictions of the theory [10]. In the case of a Fermi gas, an
analogous concept is the full counting statistics (FCS) [11],
which encodes the distribution of particle number in
extended subsystems. The FCS shows interesting proper-
ties in the ground state of the Fermi gas and, in the
noninteracting case, can also be used to extract the entan-
glement entropy of the subsystem [12,13].

The presence of trapping potentials leaves characteristic
signatures on the FCS. For the ground state of the non-
interacting Fermi gas, the FCS was studied in the presence
of a periodic potential [14], and recently the effect of
harmonic traps has been analyzed on the particle number
fluctuations and entanglement [15]. However, the question
whether some properties of the FCS hold irrespectively of
the details of the potential has not yet been addressed.

Here, we point out a remarkable universality and show
that for a broad class of trapping potentials, the proper
scaling limits of the FCS in the bulk and edge regime of the
trapped gas are given by the corresponding eigenvalue
statistics of Gaussian unitary random matrix ensembles
(GUE). Physically, the universality can be understood
from the generic behavior of the trapping potential, being

flat in the center and approximately linear around the edge
of the high-density region. The FCS is derived by a semi-
classical treatment of the single-particle wave functions
and by finding scaling variables for the bulk and edge
regimes through which the details of the potential can be
completely eliminated in the thermodynamical limit.
The appearance of random matrix eigenvalue statistics

in the FCS is rooted in the free fermion nature of the
problem. However, using the Fermi-Bose mapping [16],
the results immediately carry over to the bosonic
Tonks-Girardeau gas. Since the latter one is accessible in
cold-atom experiments [3,4], the measurement of the FCS
might be feasible in the spirit of Ref. [9], where the full
distribution function of an analogous observable could be
extracted for trapped bosons.
The FCS is defined through the generating function

�ð�Þ ¼ hexpði�NAÞi;
NA ¼

Z
A
�ðxÞdx; (1)

where NA is the total number of particles in subsystem A,
given by the integral of the density �ðxÞ, and the expecta-
tion value is taken with the N-particle ground state of the
system. For the spinless free Fermi gas, the FCS can be
expressed as a Fredholm determinant [13,17]

�ð�Þ ¼ det½1þ ðei� � 1ÞKA�; (2)

where KA is an integral operator with the kernel

KAðx; yÞ ¼
XN�1

k¼0

’�
kðxÞ’kðyÞ (3)

given by the two-point correlation function restricted to the
domain x, y 2 A. It is constructed from the single-particle
eigenfunctions of the Schrödinger equation

1

2

d2’kðxÞ
dx2

þ ½Ek � VðxÞ�’kðxÞ ¼ 0; (4)
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where we have set @ ¼ m ¼ 1. For simplicity, we consider
a symmetric Vð�xÞ ¼ VðxÞ and monotonically increasing
trapping potential such that for x ! 1, one has VðxÞ ! 1.
The spectrum is thus discrete, and for each k, the solutions
’kðxÞ admit two classical turning points given by the
condition Vð�x0kÞ ¼ Ek. In the following, we will con-
sider x � 0 since the real valued wave functions must obey
the symmetry ’kð�xÞ ¼ ð�1Þk’kðxÞ.

In the classically allowed region x < x0k, the wave
functions are oscillatory with exactly k nodes, whereas
for x > x0k, they must vanish exponentially. The wave
function which approximates the exact solution on both
sides is known as the uniform Airy approximation and
can be derived from a semiclassical treatment of the
Schrödinger equation [18]. Up to the normalization factor
Ck, it is given by

c kðxÞ ¼ Ckffiffiffiffiffiffiffiffiffiffiffi
�0
kðxÞ

q Ai½��kðxÞ�; (5)

where the þ (�) sign applies in the classically forbidden
(allowed) region and the argument of the Airy function is
given through

�kðxÞ ¼
�
3

2

Z x2

x1

pkðzÞdz
�
2=3

; (6)

with x1 ¼ minðx; x0kÞ and x2 ¼ maxðx; x0kÞ. The momen-

tum in the integrand of Eq. (6) is defined as pkðxÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jEk � VðxÞjp

and the approximate energy niveaus Ek

can be obtained from the Bohr-Sommerfeld quantization
formula [19]

Z x0k

�x0k

pkðzÞdz ¼ ðkþ 1=2Þ�: (7)

In particular, we will be interested in power-law poten-
tials of the form VpðxÞ ¼ xp=p with some even integer p.

Note that we have set the characteristic length scale of the
trap to one, which can easily be restored using the argu-
ments of trap-size scaling [20]. Then, the integral in
Eq. (7) yields

Ek � ½N pðkþ 1=2Þ�2�;

N p ¼
ffiffiffiffi
�

p
�ð3=2þ 1=pÞffiffiffi

2
p

p1=p�ð1þ 1=pÞ ;
(8)

with the exponent given by � ¼ p=ðpþ 2Þ.
In general, the approximate wave functions c kðxÞ given

by Eq. (5) rely on a semiclassical argument and are thus
expected to reproduce the exact ones’kðxÞ only for k � 1.
In fact, however, the uniform Airy approximation gives
very good results even for the eigenfunctions of the low-
lying levels. This is demonstrated on Fig. 1 for the quartic
potential V4ðxÞ. The eigenfunctions ’kðxÞ are calculated to
a high precision by Numerov’s method [21] and compared
to c kðxÞwhere the integrals in Eq. (6) can be given through

special (hypergeometric and incomplete beta) functions
and evaluated numerically. While the overlap is reasonable
for k ¼ 0, the deviations are already very small for k ¼ 3
and the two functions are essentially indistinguishable for
k ¼ 10.
Far away from the turning point x0k, the uniform Airy

approximation (5) reproduces the WKB approximation
[18] which can be obtained from asymptotic expansions
of Ai½��kðxÞ�. In particular, in the classically allowed
region, one has

c kðxÞ ¼ Ckffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�pkðxÞ

p cos

�Z x0k

x
pkðzÞdz� �

4

�
: (9)

For simple potential wells with two classical turning
points, the normalization constant can be fixed by
imposing [22]

C2
k

Z x0k

�x0k

p�1
k ðzÞdz ¼ 2�: (10)

Differentiating Eq. (7) with respect to k, one arrives to the
simple formula C2

k ¼ 2ðdEk=dkÞ and thus the normaliza-

tion factor accounts for the spectral density.
The WKB form of the wave functions (9) gives a good

approximation in the entire classically allowed regime not
too close to the turning points but depends on the details of
the potential VðxÞ. To find universal features of the FCS,
we first focus on the bulk of the trapped gas and we choose
the subsystem as the interval A ¼ ½�‘; ‘� deep in the high-
density region ‘ � x0N . Expanding the functions pkðxÞ
around x ¼ 0, one obtains

c kðxÞ � Ckffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

ffiffiffiffiffiffiffiffi
2Ek

pp cos

�
k
�

2
� ffiffiffiffiffiffiffiffi

2Ek

p
x

�
; (11)

which is valid up to linear terms in x. Substituting into
Eq. (3), one arrives to the following sum
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FIG. 1 (color online). Exact wave functions ’kðxÞ (symbols)
and their uniform Airy approximations c kðxÞ (lines) for the
quartic potential V4ðxÞ.
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KAðx; yÞ �
XN�1

k¼0

C2
k

2�
ffiffiffiffiffiffiffiffi
2Ek

p cos
ffiffiffiffiffiffiffiffi
2Ek

p ðx� yÞ

þ XN�1

k¼0

C2
kð�1Þk

2�
ffiffiffiffiffiffiffiffi
2Ek

p cos
ffiffiffiffiffiffiffiffi
2Ek

p ðxþ yÞ: (12)

We are interested in the N ! 1 limit of the FCS, where
the first sum in Eq. (12) diverges. Therefore, we introduce
new variables and define the scaling limit of the kernel as

Krðu; vÞ ¼ lim
N!1

1ffiffiffiffiffiffiffiffiffi
2EN

p KA

�
uffiffiffiffiffiffiffiffiffi
2EN

p ;
vffiffiffiffiffiffiffiffiffi
2EN

p
�
; (13)

where the subscript refers to the domain [�r, r] of the
kernel in the scaled variables with the effective length

r ¼ ‘
ffiffiffiffiffiffiffiffiffi
2EN

p
. Introducing the variable z ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ek=EN

p
, the

first sum in Eq. (12) can be converted into an integral while
the second, alternating sum vanishes in the scaling limit.
Writing dz ¼ ðdEk=dkÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4EkEN

p
and using the expression

of C2
k in terms of the spectral density, one finds

Krðu; vÞ ¼ 1

�

Z 1

0
dz cos zðu� vÞ ¼ sinðu� vÞ

�ðu� vÞ : (14)

Hence, in the bulk scaling limit, we recover the sine kernel
which appears in the theory of GUE random matrices.
Indeed, the probability Eðn; tÞ of finding n eigenvalues in
an interval [�r, r] in the bulk of the GUE spectrum is given
by [23]

Eðn; rÞ ¼ ð�1Þn
n!

dn

dzn
detð1� zKrÞ

��������z¼1
: (15)

Fourier transforming Eq. (15) with respect to n yields
the determinant in Eq. (2) with KA ¼ Kr, and thus the
bulk FCS of the Fermi gas is identical to the bulk GUE
eigenvalue statistics.

The bulk scaling limit can be tested through the cumu-
lants �m ¼ ð�i@�Þm ln�ð�Þj�¼0 of the particle number. In
particular, we calculated the fluctuations �2 as a function of
‘ for the potential V4ðxÞ. The numerics is simplified by
considering, instead of the integral operator KA, the over-
lap matrix CA with elements

CA;kl ¼
Z
A
dx’kðxÞ’lðxÞ (16)

and using TrKn
A ¼ TrCn

A [24]. Then, the FCS of Eq. (2)
can be treated as a regular determinant and one has
�2ð‘Þ ¼ TrCAð1�CAÞ. This is then compared to existing
results derived using the asymptotics of Fredholm deter-
minants with the sine kernel [17]

�2ðrÞ ¼ TrKrð1� KrÞ ¼ 1

�2
ðlog4rþ �þ 1Þ; (17)

where � is the Euler constant and we neglected terms
vanishing for N ! 1.

The results are shown in Fig. 2 for various N with the
dashed lines representing the curves �2ðrÞ. One can see a

good agreement for small ‘, but the solid curves �2ð‘Þ
deviate from the scaling prediction as soon as the segment
size exceeds the size of the flat region in the densities
�ðxÞ ¼ KAðx; xÞ, shown in the inset. However, the ampli-
tude of the Oðx2Þ corrections to Eq. (12) is proportional to
V00ð0Þ=Ek, which vanishes for VpðxÞ with p � 4, and thus

the flat density region extends for higher p. Note also
the strong oscillations in �2ð‘Þ as well as in �ðxÞ that are
results of the alternating sum in Eq. (12) and diminish for
higher N. The bulk scaling was further tested by calculat-
ing the entanglement entropy Sð‘Þ ¼ �Tr ½CA lnCA þ
ð1�CAÞ lnð1�CAÞ� and comparing it to the scaling
prediction SðrÞ [24,25] with similarly looking results as
in Fig. 2.
The other regime where universal features are expected

to emerge is near the edge of the high-density region. Close
to the classical turning point, the argument �kðxÞ of the
Airy function in Eq. (5) can be expanded around x0k and
yields [18]

c kðxÞ � Ckffiffiffiffiffiffi
	k

p Ai½	kðx� x0kÞ�; (18)

with 	k ¼ ½2V0ðx0kÞ�1=3 giving the inverse of the typical
length scale. The subsystem is now fixed as the interval
A ¼ ðx0N þ s=	N;1Þ starting close to the edge of the
high-density region and extending to infinity. Note that
this choice of the interval A strongly limits the terms
contributing to the sum in Eq. (3) since the Airy functions
in Eq. (18) are shifted gradually to the left for decreasing k
and for jx0k � x0Nj � jsj=	N they become exponentially
small in A. The edge scaling limit of the kernel is then
defined as

Ksðu; vÞ ¼ lim
N!1

1

	N

KA

�
x0N þ u

	N

; x0N þ v

	N

�
; (19)
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FIG. 2 (color online). Particle number fluctuations for the
quartic potential V4ðxÞ in the interval [�‘, ‘] (solid lines)
compared to the prediction of Eq. (17) in the bulk scaling limit
(dashed lines) for various N. The inset shows the corresponding
density profiles �ðxÞ.

PRL 111, 080402 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

23 AUGUST 2013

080402-3



where the subscript refers to the domain u, v 2 ðs;1Þ in
the new variables. The factors 	k=	N appearing in the
arguments of the Airy functions can be approximated as

	k

	N

� 1þ V 00ðx0NÞ
3V 0ðx0NÞ ðx0k � x0NÞ; (20)

and since jx0k � x0Nj 	 jsj=	N , the second term vanishes
in the limit N ! 1 for any well behaved potential. We
thus set 	k ¼ 	N in evaluating Eq. (19) and introduce
z ¼ 	Nðx0N � x0kÞ. Using x0k ¼ V�1ðEkÞ, one finds
dz � �C2

k=	
2
N and consequently

Ksðu; vÞ ¼
Z 1

0
dzAiðuþ zÞAiðvþ zÞ

¼ AiðuÞAi0ðvÞ � Ai0ðuÞAiðvÞ
u� v

: (21)

Thus, we recover the Airy kernel in the edge scaling limit.
The FCS is then identical to the GUE edge eigenvalue
statistics [26], which follows immediately from a formula
analogous to Eq. (15) by replacing r with s.

As a first test of the scaling limit, we calculated the edge
density profiles �ðxÞ in the potential V4ðxÞ for various N
and compared them to the density scaling function �ðuÞ ¼
Ksðu; uÞ ¼ ½Ai0ðuÞ�2 � uAi2ðuÞ, with the result shown in
Fig. 3. To reach larger particle numbersN, we used, instead
of the exact wave functions ’kðxÞ, the c kðxÞ in Eq. (5),
which gives excellent results for the profile in the edge
region. The finite-size scaling of the data can be inferred
from the correction term in Eq. (20). For power-law poten-
tials, one has V 00

pðx0NÞ=V 0
pðx0NÞ ¼ ðp� 1Þ=x0N , and multi-

plying by ðx0k � x0NÞ 	 	�1
N , we obtain a N�2=3 scaling of

the finite-size corrections, which is consistent with the data
in Fig. 3. Note that the exponent of N is independent of p;
however, the prefactor p� 1 implies that the scaling col-
lapse gets worse for larger p which we indeed observed in
the numerics for p ¼ 6.

The edge limit of the FCS is verified by calculating the
particle number fluctuations �2 and entanglement entropy
S of the interval (s, 1) in the scaled coordinates. They are
shown in Fig. 4 for various N and compared to the scaling
prediction, calculated using a powerful numerical toolbox
for the evaluation of Fredholm determinants arising in
random matrix theory [27]. Both �2 and S converge slowly
to their respective scaling functions.
In conclusion, we have shown the universality of the FCS

for a noninteracting trapped Fermi gas in the bulk and edge
regions, given by the respective eigenvalue statistics of GUE
random matrices. Interestingly, the same universal limits
emerge for non-Gaussian unitary randommatrix ensembles,
where the potential VðxÞ appears in the exponential weight
function and the semiclassical asymptotics of the corre-
sponding orthogonal polynomials has to be analyzed
[28,29]. This leads to results that are surprisingly similar to
Eq. (5), even though the two problems coincide only in the
trivial Gaussian case, VðxÞ being the harmonic potential.
One expects that the same universality would emerge for

trapped fermions on a lattice and might even generalize to
other potentials. In fact, the connection between FCS and
GUE statistics has recently been pointed out for the time
evolution of lattice fermions from a step-initial condition
[30]. However, in this case, the correlation matrix is uni-
tarily equivalent to the one describing the ground state of a
chain with a linear potential [31], and hence the universal-
ity of the FCS carries over to the gradient problem. Note
that without the lattice, the Airy functions in Eq. (18) are
the exact eigenstates and the spectrum is continuous; thus,
the edge limit (21) describes the FCS in the entire high-
density region while the bulk regime is missing.
It would also be interesting to consider the dynamical

FCS after releasing the gas from the trap. In the harmonic
case, the corresponding time-dependent Schrödinger
equation can be solved exactly and the kernel has, up to
an irrelevant phase factor, the equilibrium form in
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FIG. 3 (color online). Rescaled density profiles (dashed lines)
for V4ðxÞ near the edge of the high-density region for various N.
The uppermost (solid) line shows the N ! 1 scaling function
�ðuÞ; see the text.
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appropriately rescaled variables [32]. Thus, the limiting
scaling forms of the FCS are also unchanged. However, for
general VðxÞ, the situation is more complicated and
requires a careful analysis. Finally, in this nonequilibrium
context, one could study the waiting time distribution
between counting events where connections to random
matrix theory have recently been revealed [33].
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