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We theoretically investigate electron energy loss spectroscopy (EELS) of metallic nanoparticles in the

optical frequency domain. Using a quasistatic approximation scheme together with a plasmon eigenmode

expansion, we show that EELS can be rephrased in terms of a tomography problem. For selected single

and coupled nanoparticles we extract the three-dimensional plasmon fields from a collection of rotated

EELS maps. Our results pave the way for a fully three-dimensional plasmon-field tomography and

establish EELS as a quantitative measurement device for plasmonics.
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Electron energy loss spectroscopy (EELS) has emerged
as an ideal tool for the study of surface plasmon polaritons
and particle plasmons [1]. For surface plasmon polaritons,
electrons with kinetic energies of a few to hundreds of keV
penetrate through a metal film and excite surface and bulk
plasmons, whose resonance frequencies can be directly
extracted from the energy loss spectra [2,3]. By raster scan-
ning the electron beam over a plasmonic nanoparticle, one
can extract both the resonances and fieldmaps of the particle
plasmons [4,5]. This technique has been extensively used in
recent years to map out the plasmon modes of nanotriangles
[5–7], nanorods [4,8–10], nanodisks [11], nanocubes [12],
nanoholes [13], and coupled nanoparticles [14–17].

Despite its success and widespread application, the
interpretation of plasmonic EELS data remains unclear.
In [18] the authors speculated that EELS renders the
photonic LDOS, a quantity of immense importance in
nano-optics [19], but the interpretation was questioned in
[20]. A detailed comparison between LDOS and EELS was
given recently in [21], where the authors provided an
intuitive interpretation of different measurement schemes
in terms of an eigenmode expansion. It should be noted that
the controversy only concerns the interpretation, whereas
the theoretical description of EELS maps is well estab-
lished [1] and very good agreement between experiment
and simulation has been achieved [5,8,11,12].

In this Letter we challenge the interpretation of EELS
maps of plasmonic nanoparticles, and rephrase the prob-
lem in terms of a tomography scheme. For sufficiently
small nanoparticles, where the quasistatic approximation
can be employed, we expand the particle fields in terms
of plasmonic eigenmodes [21–23] and the EELS signal
becomes a simple spatial average along the electron propa-
gation direction. We show by the example of single and
coupled nanorods that the extraction of plasmon fields
from EELS data can be reduced to an inverse Radon trans-
formation, which is at the heart of most modern computer
tomography algorithms [24]. Otherwise the field extraction
can be formulated in terms of an inverse problem which
can be solved by optimization techniques.

EELS simulation.—Electron energy loss is a two-step
process, where the electron first excites a surface plasmon
and, in turn, the electron has to perform work against
the induced surface plasmon field. The energy loss
becomes [1,2]

�E ¼ e
Z

v �Eind½reðtÞ; t�dt ¼
Z 1

0
@!�EELSð!Þd!; (1)

where�e and v are the charge and velocity of the electron,
respectively, and Eind is the electric field of the surface
plasmon evaluated at the electron positions. In the second
expression of Eq. (1) we have spectrally decomposed the
different loss contributions and introduced the loss proba-
bility �EELS. A similar expression can also be obtained from
a fully quantum-mechanical description scheme [1]. For
nanoparticles much smaller than the wavelength of light,
one can employ the quasistatic limit by keeping only the
scalar potential and performing the static limit for the Green
functions, while retaining the full frequency dependence for
the material permittivities [1]. We are then led to [1,25]

�EELSðR0; !Þ ¼ � e2

�@v2

Z 1

�1
dzdz0

� Im½e�i!z=vGindðre; r0e; !Þei!z0=v�dzdz0
(2)

for the loss probability. Here Gind is the Green function in
the quasistatic limit that describes the response of the
metallic nanoparticle [1,20]. We next introduce plasmonic
eigenmodes [21–23] defined through

Z
@�

@Gðs; s0Þ
@n

�kðs0Þda0 ¼ �k�kðsÞ; (3)

where �k and �kðsÞ denote the plasmonic eigenvalues
and eigenmodes, respectively, and @G=@n is the derivative
of the Green function of an unboundedmediumwith respect
to the outer surface normal. The eigenmodes are orthogonal
in the sense

R
�kðsÞGðs; s0Þ�k0 ðsÞdada0 ¼ �kk0 and can be

chosen real [22,23]. Let �kðrÞ ¼
R
@�Gðr; sÞ�kðsÞda

denote the potential of the kth eigenmode. The induced

PRL 111, 076801 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

16 AUGUST 2013

0031-9007=13=111(7)=076801(5) 076801-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.111.076801


Green function can then be decomposed into these eigen-
modes according to [21]

Gindðr; r0Þ ¼ �X
k

�k � 2�

�þ �k

�kðrÞ�kðr0Þ 1

"ðr0Þ ; (4)

with � ¼ 2�ð"1 � "2Þ=ð"1 þ "2Þ and "1 and "2 being the
dielectric functions inside and outside the particle, respec-
tively. The plus andminus signs correspond to the situations
where r0 lies outside or inside the particle. Inserting Eq. (4)
into the loss probability of Eq. (2), we obtain for an electron
trajectory that does not penetrate the particle the final result

�out
EELSðR0; !Þ ¼ � e2

�@v2"2

X
k

Im

�
�k þ 2�

�þ �k

�

�
��������
Z 1

�1
ei!z=v�kðrÞdz

��������
2

: (5)

This expression, which has been previously derived in
[21], forms the starting point for our following analysis. At
a plasmon resonance, defined through Re½�ð!Þþ�k�¼0,
the resonance term in Eq. (5) becomes large and its con-
tribution can dominate the total loss probability. Let us
assume for the moment that !z=v � 1, such that the
EELS probability for the single, dominant mode reduces to

�out
EELS;�ðR0; !Þ � jR�½�kðrÞ�j2: (6)

HereR� is the Radon transformation [24,26] that performs
a line integration of �kðrÞ along the z direction. We have
included in Eq. (6) an angle � that accounts for a possible
rotation of the integration axis, as schematically depicted
in Fig. 1. A collection of Radon transformations for a
complete set of rotation angles is conveniently called a
sinogram [26]. The projection-slice theorem then states
that one can uniquely reconstruct the original function
from the sinogram. Equation (6) differs from a normal
sinogram in that �EELS depends on the square of the
Radon transforms, which leads to a sign ambiguity in the
sinogram. In the following we first analyze a situation
where the sign ambiguity can be ignored, and we will
discuss the more general situation further below.

Results.—We first consider the setup depicted in Fig. 1,
where an electron beam is raster scanned over a single
nanorod and the EELS maps are recorded for different loss
energies @! and rotation angles �. In Fig. 2(a) we show the
simulated EELS spectrum for the electron beam positions
shown in the inset. We use a dielectric function for silver
[27] and employ the MNPBEM toolbox [28] for the solution
of the full Maxwell equations (without the quasistatic ap-
proximation). At low loss energies one observes two peaks
which can be attributed to the dipolar and quadrupolar
plasmon modes. Owing to the symmetry of the modes, an
electron propagating along z always passes through regions
where �kðrÞ is either solely positive or negative, which
allows us to perform the inverse Radon transformation in
Eq. (6). Results are reported in 2(d) and 2(e), showing
almost perfect agreement between the reconstructed

potentials and �kðrÞ, apart from the potential sign that
cannot be reconstructed from the EELS data. This is an
encouraging finding, considering that our EELS maps are
obtained from the solutions of the full Maxwell equations.
In Fig. 3 we show EELSmaps for coupled nanoparticles,

which have received considerable interest in recent years
[14–17,20], partially due to their importance for surface
enhanced Raman scattering [29,30]. Inside the gap region
the EELS signal becomes zero for the bonding mode
and maximal for the antibonding mode, as discussed in
detail in Ref. [20]. However, from the reconstructed
potential maps one observes a significant variation of the
bonding potential along x, indicating a strong electric field
in the gap region, contrary to the antibonding mode which
has only a weak dependence along x. Thus, although
‘‘being blind to hot spots’’ [20,31], EELS tomography
even allows us to reconstruct the complete field distribu-
tion inside the gap region.
The situation becomes more complicated when the elec-

tron passes through the metallic nanoparticle, and the
induced Green function in Eq. (4) has to be separated
into contributions where the electron is either inside or
outside the metallic particle. Inside the metal the electron
becomes efficiently screened by free electrons through the
"�1 term. To a good approximation, we can ignore this
contribution and approximate the EELS probability by

�EELS;�ðR0; !Þ � ðR�½�kðrÞ�ÞðR�½�out
k ðrÞ�Þ; (7)

where �out
k ðrÞ is the potential that is artificially set to zero

inside the particle. In Eq. (7) it is no longer possible to

FIG. 1 (color online). Schematics of EELS tomography.
An electron beam is raster scanned over a metallic nanoparticle,
and EELS maps are recorded for different rotation angles �.
The main panel shows the isosurface and contour lines for the
modulus of the dipolar surface plasmon potential, and the insets
report the different EELS maps. From the complete collection
of maps one can reconstruct the plasmon fields, as described in
text (positions of reconstruction planes used in Figs. 2 and 3 are
indicated in the main panel).

PRL 111, 076801 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

16 AUGUST 2013

076801-2



perform an inverse Radon transformation to reconstruct the
plasmon potential, and we have to proceed in a different
manner. First, we introduce a cost function that measures
the distance between the computed EELS probabilities and
those computed from Eq. (7). Let f0 denote the EELS
probabilities for all impact parameters and rotation angles,
and f½�kðrÞ� the corresponding probabilities computed
from Eq. (7). In a second step we then determine, starting
from some reasonable initial guess, those potentials that
minimize the cost function J ¼ ð1=2Þjf0 � f½�kðrÞ�j2
using a nonlinear conjugate gradient method [32]. In
most cases the initial guess for the potentials was not
overly critical and the minimization algorithm converged
after a few iterations. Figures 2(b) and 2(c) report the
reconstructed potentials and �kðrÞ for electrons penetrat-
ing through the metallic nanoparticle, and we again
observe very good agreement.

Having established a numerical optimization scheme
for the potential through minimization of the cost function,
we can also rephrase the EELS tomography problem of
Eqs. (5) and (6) in a way that appears better suited for expe-
rimental implementation and that can also be employed for
more complicated structures. To this end, we first note that
the source for the potential �kðrÞ is the charge distribution

�kðsÞ of the eigenmodes, and one can reconstruct equally
well the surface charge distribution or the potential. We
next rewrite Eq. (5) in the form

�out
EELS;�ðR0; !Þ ¼ X

k

Ckð!Þ
��������
Z

��
R0;�

ðsÞ�kðsÞda
��������

2

; (8)

where �R0;�ðsÞ ¼ �ðe=vÞR1
�1 Gðs; reÞei!ze=vdze is the

potential of the electron propagating along re, with direc-
tion � and impact parameter R0, and the form of Ckð!Þ
follows directly from the comparison with Eq. (5).
Equation (8) allows for the reconstruction of �kðsÞ, which
can be approximated by boundary elements (as used in our
simulation approach [28]) or some free-form surface func-
tions such as nonuniform splines, provided that the nano-
particle surface is known [26]. In what follows, we again
set !=v 	 0.
Figure 4 shows for a number of particle shapes the

reconstruction based on Eq. (8). In all cases we used for
the initial guess a mode profile with proper symmetry,
whereas other details turned out to be unimportant.
Figure 4(a) reports �kðsÞ (left) and the reconstructed
surface charge distributions (right) for the dipolar and
quadrupolar nanorod modes, which are in very good
agreement. In Fig. 4(b) we show results for a disk-shaped
particle with two degenerate eigenmodes. For the recon-
struction, we keep in Eq. (8) two modes with identical
coefficients Ck, and ensure that, because of symmetry, the

bonding 

antibonding 

b-e 

0              max 

(b)

(a)

 (c) (d) (e) 

bond 

anti 

10 nm 

x 3 x 3 x 3 

- 1nm 0 nm 1 nm 2 nm 

Reconstr. Potential 

x 3 

FIG. 3 (color online). (a) Same as Fig. 2 but for coupled
nanorods. The particle and simulation parameters are the same
as those given in the caption of Fig. 2, the gap distance between
the nanoparticles is 5 nm. In the inset we report the potentials for
the bonding and antibonding modes. (b)–(e) Reconstructed and
true potential maps at different x positions, reported in the panels,
as measured with respect to the gap center. For clarity, the
potentials for the bonding mode are multiplied by a factor of 3.
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FIG. 2 (color online). (a) EELS spectrum for silver nanorod
with dimensions of 50� 15� 7 nm3 and for the two beam
positions indicated with circles in the inset. The inset also reports
the potential maps for the dipole and quadrupole mode at z ¼ 0.
The dashed lines indicate the positions of the planes where the
potentials are reconstructed from the collection of EELS maps.
(b)–(e) Potential maps reconstructed from EELS maps (left-hand
panels) and potential maps (right-hand panels) for dipole mode
(upper panels) and quadrupole mode (lower panel). In the
simulations we assume a kinetic electron energy of 200 keV
and use a dielectric constant of 1.6 for the embedding medium.
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charge distributions of these modes are identical but
rotated by 90
 with respect to each other. Again the opti-
mization procedure comes up with the correct modes. We
emphasize that a similar approach could be used for modes
that are energetically close to each other, although in this
case the coefficients Ck are different and the optimization
should include EELS maps for different loss energies.
Finally, Fig. 4(c) shows the bonding and antibonding
mode distributions for a bowtie geometry, demonstrating
that our approach can also be applied to more complicated
structures.

In Fig. 5 we compare for the nanorod the true and
reconstructed potentials along the line (e) shown in the

inset of Fig. 2(a) [z ¼ 0]. We observe that the quasistatic
potential and the potentials reconstructed from the EELS
maps, through either the Radon transformation [Eq. (6)]
or the surface charges of Eq. (8), are in good agreement,
demonstrating the quantitative measurement capability of
our approach. The comparison with the retarded potentials
is complicated by the fact that there exists no clear eigen-
mode concept for the full Maxwell equations, and we thus
we have to proceed in a different manner. In the figure we
show the modulus of the induced potentials for a plane-
wave excitation (we use an incidence angle of 45
 where
both dipolar and quadrupolar modes can be excited). Good
agreement between the solutions of the quasistatic and
full Maxwell equations is found, with only small devia-
tions at larger positions, attributed to the different excita-
tion conditions and/or retardation effects not included in
the quasistatic solutions.
There are several reasons why Eq. (8) is advantageous in

comparison to Eq. (6). First, while �kðsÞ can typically be
represented by a few tens to hundreds of boundary ele-
ments or parameters, the EELS maps for different rotation
angles provide a much larger data set, thus making the
optimization procedure for the reconstruction a highly
overdetermined problem. The reason for this overdetermi-
nation is the two-dimensional nature of the surface charge
distribution, whereas the potential, which is uniquely
determined by �kðsÞ, can be measured in the entire three-
dimensional space. For the reconstruction of �kðsÞ one can
thus even discard trajectories where the electrons pass
through the nanoparticle, which are problematic in experi-
ment because of the electron attenuation within the metal.
The inverse Radon transformation additionally requires a
large field of view, to properly include the far-reaching
components of the dipolar or multipolar surface plasmon
fields, in contrast to Eq. (8) that can be restricted to
significantly smaller regions. Consideration of finite wave
numbers !=v naturally enters the framework of Eq. (8), in
the spirit of diffraction tomography [33], although in this
work we have neglected for simplicity such wave number
effects. Finally, effects of substrates or layers supporting
the nanoparticles can be included in our approach by
replacing in Eq. (3) and in the definition of �R0;�ðsÞ the
Green function of an unbounded medium by that including
substrate or layer effects. The main limitations of our
tomography scheme are probably the quasistatic approxi-
mation, which restricts the scheme to sufficiently small
particles, and the high degree of preknowledge needed for
the surface charge reconstruction (homogeneous dielectric
function of particle, surface charge distributions as the only
source for plasmonic fields).
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Rev. B 79, 041401(R) (2009).

[9] O. Nicoletti, M. Wubs, N.A. Mortensen, W. Sigle,
P. A. van Aken, and P. A. Midgley, Opt. Express 19,
15 371 (2011).

[10] D. Rossouw and G.A. Botton, Phys. Rev. Lett. 110,
066801 (2013).

[11] F.-P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau,
F. Hofer, and J. R. Krenn, Nano Lett. 12, 5780 (2012).

[12] S. Mazzucco, N. Geuquet, J. Ye, O. Stéphan, W. Van Roy,
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