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We propose a procedure to rank the most interesting solutions from high-throughput materials design

studies. Such a tool is becoming indispensable due to the growing size of computational screening studies

and the large number of criteria involved in realistic materials design. As a proof of principle, the binary

tungsten alloys are screened for both large-weight and high-impact materials, as well as for fusion reactor

applications. Moreover, the concept is generally applicable to any design problem where multiple

competing criteria have to be optimized.
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In recent years, materials design has benefitted consid-
erably from computational searches [1]. The increase in
computing power has allowed the screening of large num-
bers of hypothetical compounds for several well-defined
design criteria. However, interpreting the output from such
investigations is not a trivial task, especially when multiple
objectives are optimized simultaneously. The field of
multicriteria decision making [2,3] proposes the use of
the so-called Pareto set to drastically reduce the number
of materials under consideration. Multicriteria decision
making notes that in the case of competing requirements,
a single ‘‘best’’ solution does not exist. Instead, a number
of solutions can be shown to outperform the rest, forming
the Pareto set P . Compared to such a Pareto solution ~x,
none of the alternative x improve all of the decision criteria

fðkÞ simultaneously:

~x 2 P , ∄ x:

8
<

:

fðkÞ � ~fðkÞ 8 k ¼ 1; . . . ; N

9 k0: f
ðk0Þ > ~fðk0Þ:

(1)

Here, we assume the design problem to be described by N

normalized, maximizable objective functions fðkÞ with
k ¼ 1; . . . ; N, relating to each Pareto solution a set of coor-
dinates. The assembled Pareto points are therefore also
called the Pareto front or skyline, as they outline a hyper-
surface in N-dimensional space (full black line in Fig. 1).

Pareto optimality has already been successfully applied
to computational materials design [4,5]. Unfortunately, as
the dimensionality of the problem increases, so does the
size of the Pareto set P . It then becomes prohibitively time
consuming to study every single Pareto compound in more
detail. Several post-Pareto analysis methods therefore try
to reduce the number of candidates even further [6–8], but
none of them offer a quantitative ordering. This Letter, on
the other hand, proposes a mathematically founded proce-
dure that allows the ranking of the Pareto compounds, thus
identifying the most optimal compromises with respect to
the design requirements. It is, however, also more generally

applicable to any multicriterion design problem, ranging
from space technology [9] over urban studies [10] to
linguistics [11].
Figure 1 illustrates how a ranking can be based on the

tradeoff between two Pareto solutions, using a hypothetical
2D data set. If we consider an arbitrary Pareto point, such
as b, its bottom left quadrant (hatched area) contains only
suboptimal (dominated) points, while solutions outside this
region offer a tradeoff with the properties of b, either
because they improve X (e.g., c) or because they improve
Y (e.g., a). The beneficial part of this tradeoff increases as
we move away from the dominated quadrant, correspond-
ing to a larger angle �. When � ¼ 45�, none of the points is
particularly preferred: every loss �Y is now compensated
by an equivalent gain in �X, or vice versa. For angles

FIG. 1 (color online). Win fraction [Eq. (2)] with respect to
Pareto solution b (wfb), ranging from 0% (red, worst tradeoff) to
100% (green, best tradeoff). The quadrant dominated by point b
has been hatched. At a deviation � ¼ 45� from the skyline, all
solutions are equally valuable (50% win fraction). For the given
two-dimensional Pareto front, however, a outranks b and b
outranks c.
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larger than 45�, on the other hand, the tradeoff favors the
new data point. When applied to Fig. 1, this means that a
outranks b, while b outranks c.

To distinguish between two Pareto solutions, we there-
fore define the win fraction (wf) of ~xj with respect to ~xi:

wfiðjÞ ¼
P

k j~fðkÞj � ~fðkÞi j �H ð~fðkÞj � ~fðkÞi Þ
P

k j~fðkÞj � ~fðkÞi j ; (2)

where H ðtÞ stands for the Heaviside step function
(1 for t > 0 and 0 for t < 0). The denominator of Eq. (2)
represents the total tradeoff between the two Pareto solu-
tions, while in the nominator, only the positive terms
remain. The win fraction wfiðjÞ hence expresses what
part of the total tradeoff between ~xi and ~xj favors ~xj.

Since each part of the tradeoff favors one of both solutions,
wfiðjÞ and wfjðiÞ always sum to 100%. In 2D, the win

fraction is directly related to the skyline angle �, as can be
seen from the win-fraction contour lines in Fig. 1.

A ranking factor for a given solution ~xj now follows

from the minimum of the win fraction (mwf) with respect
to all other Pareto compounds ~xi: mwfðjÞ ¼ mini½wfiðjÞ�.
A large mwf value indicates that ~xj provides a considerably

better tradeoff than any other Pareto solution. In this way,
an mwf-based ordering identifies the most striking features
of the skyline.

We first apply this ranking criterion to two classic engi-
neering problems, as a proof of principle: the design of
large-weight and of high-impact materials. In both ex-
amples, the same search space is investigated, containing
285 ordered body-centered cubic (bcc) binary tungsten
alloys with doping levels of 50%, 25%, 12.5%, and
6.25%. This includes all possible alloying elements up
to Rn (without the lanthanides) and pure W. For each of
these compounds, a case-specific set of properties was
calculated by means of density-functional theory [12],
using the projector augmented-wave formalism [13,14] in
VASP [15,16]. All calculations were performed with the

Perdew-Burke-Ernzerhof exchange-correlation functional
[17]. Before the Pareto analysis, the value ranges of all
properties were normalized to the corresponding range of
the elemental crystals [18] and scaled with a weight factor.
This provides the mwf the flexibility to express the relative
importance of each objective, if user-specific preferences
require so. In the examples discussed here, all weights
were set to unity (equally important objectives). A sum-
mary of further computational settings and the calculated
properties is given in the Supplemental Material [19].

As a first example, consider the search for an inex-
pensive weight, useful as a counterbalance, a press, or a
wrecking ball. Acceptable candidate compounds should
then combine a large mass density with a good price.
The mass density (as well as the bulk modulus in a later
example) was extracted from a Birch-Murnaghan fit [20]
to a 13-point equation of state (between V0 � 6%), while

price data were obtained from the Chemicool Web site,
based on prices from Goodfellow [21]. The corresponding
skyline is displayed in Fig. 2 (top). In addition, a buffer
zone of one error bar is indicated by a dashed line to show
the influence of computational uncertainties [18] (see the
Supplemental Material [19]). By considering this buffer
zone, we avoid overlooking compounds that belong to the
experimental Pareto set, yet—due to computational inac-
curacies—not to the computational Pareto set.
In Fig. 2, pure W intuitively appears as the most promi-

nent Pareto solution: increasing the mass density comes at a
tremendous cost (a 35-fold price increase), while relaxing
the constraints on the mass density only marginally
improves the price. Indeed, this also appears from its mwf
(73%), which overshadows all other Pareto compounds.
When the price of tungsten is considered to be too high,
however, alloying offers a solution. The minimum win
fractions of WPb (27%), W3Pb (25%), W7Pb (24%), and
W15Pb (21%) are ranked just below pure W. When a mass
density increase is desired, on the other hand, WIr is the
highest-ranked alloy in the list, with an mwf of 10%.
Even when the search space is extended with 71 ele-

mental crystals [18], tungsten remains the most interesting
Pareto solution, with an mwf of 54%. It is now directly

FIG. 2 (color online). Pareto analysis of the bcc binary tung-
sten alloys with respect to the mass density and the molar price.
Top: skyline plot with a one-error-bar uncertainty zone (dashed
line). Bottom: evolution of the objectives within the Pareto set.
Three high-ranked solutions are indicated with their minimum
win fractions.
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followed by pure lead (46%) and pure iron (43%). Both are
commonly used materials for large-weight applications,
favored over tungsten because of their considerably lower
price. They illustrate that an mwf-based ranking indeed
identifies the most promising options.

In a second test case, we focus on the hardness and
temperature resistance of tungsten. Although W itself
already performs very well for these properties, using
alloying elements might nevertheless yield an overall
improvement. We therefore screen our search space for a
good bulk modulus (hardness), cohesive energy (thermal
resistance), and price. Materials that meet all of these
objectives can be used in drill bits or armor-piercing
projectiles, for example.

A 3D representation of the skyline (left-hand panel of
Fig. 3) allows us to discern the two most prominent Pareto
solutions, WC (in green) and pure W (in red). The mini-
mum win fractions correctly suggest them as highest-
ranked materials, with mwf values of 56% and 44%,
respectively. The third Pareto compound WRe already
performs much worse, with an mwf of only 13%. WC
and W are indeed used commercially. Tungsten carbide is
the harder material, both in its metastable cubic structure
and in the ground-state hexagonal phase [22], while tung-
sten itself is more temperature resistant. Another com-
monly employed material, iron, enters the Pareto set at
an mwf of 32% when we extend the search space with 71
elemental crystals.

These two test cases demonstrate that our procedure
yields meaningful results for well-known examples. A
last case study, in the domain of nuclear fusion research,
shows its strength in tackling cutting-edge design prob-
lems. Because of the harsh operating conditions inside
fusion reactors, materials development is a critical aspect
there [23,24]. This particularly holds for the in-vessel

components, which directly come into contact with the
plasma. The divertor, for example, filters ions from the
plasma but only by withstanding huge heat and particle
fluxes [25]. Most designs for it are based on tungsten
because of the associated high-temperature resistance
and low activation [26]. Unfortunately, the ductile-to-
brittle transition temperature of tungsten is too high for
structural applications: in the low-temperature range of
operating conditions, tungsten is in the brittle regime.
This has initiated an ongoing search for ductilizing
alloying elements [25].
Our test set of binary W alloys can contribute to this

screening of potential divertor compounds. A suitable
divertor material needs to improve the ductility of tungsten
while maintaining its favorable high-temperature resist-
ance and acceptable price. Evaluating these three objec-
tives for each of the tungsten alloys may therefore provide
the fusion community with some attractive candidate
reactor materials.
Since at a defect-free atomic scale, ductility is an intrin-

sic property of the material, we use the Cauchy pressure PC

to estimate it. Large values of PC indicate large nonpair-
wise contributions to the interatomic forces, suggesting an
isotropic material [27]. Indeed, directional bonds hinder
shear and result in brittle fracture more easily, while iso-
tropic bonds allow for a certain plasticity. For cubic crys-
tals, PC equals the elastic constant differenceC12 � C44. In
our W alloy test set, these elastic constants were extracted
from the relation between a set of 2% strains and the
corresponding stresses.
Contrary to the two previous test cases, we only consider

the mechanically stable structures here. Mechanical stabil-
ity, as prescribed by the Born criteria [28], is governed by
the elastic parameters, and crystals that do not meet these
requirements produce highly unrealistic Cauchy pressures.

FIG. 3 (color online). Skyline plot and its projection onto the three coordinate planes [33] for the bcc binary tungsten alloys. Left:
with respect to the bulk modulus (x), cohesive energy (y), and logarithmic price (�z). Right: with respect to the Cauchy pressure (x),
cohesive energy (y), and logarithmic price (�z).
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As this affects the Pareto front substantially, it is best to
exclude them. An overview of the stability of the tungsten
alloys is given in the Supplemental Material [19].

A Pareto analysis of the three objectives—Cauchy pres-
sure, cohesive energy, and price—retains 36 possible so-
lutions (Table I). They are depicted in Fig. 3 (right). If we
moreover require the Pareto solutions to be energetically
stable (with respect to phase segregation), this number can
be reduced even further. Energetic stability mainly refers to
the formation energy. When the formation energy exceeds
several times the estimated error on the computed value
(0.15 eV/at, Ref. [18]), it can safely be concluded that this
compound is unlikely to be (meta)stable. This is the case
for W7C, W3P, and W15C, for example, which can there-
fore be neglected in the Pareto set of Table I. A posteriori
analyses of the Pareto set are not necessarily limited to
density-functional theory quantities. Other design require-
ments, such as avoiding radioactive activation, could be
taken into account in a similar fashion.

The mwf procedure does not rank pure tungsten highest.
At 22%, WTa provides a better tradeoff, yielding an
improved Cauchy pressure (128 GPa versus 64 GPa), while
the cohesive energy is almost the same (differing by only
30 kJ=mol). In addition, other doping levels have similar
effects. For three of the four studied concentrations, the
W-Ta system is Pareto efficient, and W15Ta lies only 6%
of an error bar from the Pareto front. All W-Ta alloys are
mechanically and energetically stable, even at 0 K [19].
Tantalum is three times more expensive than tungsten,
however.

Table I also suggests vanadium as an interesting possi-
bility. Although the cohesive energy deteriorates by up to
140 kJ=mol, combining tungsten with high concentrations
of vanadium improves its intrinsic ductility even further than
with tantalum (PC ¼ 138 GPa for WV). In addition, using
vanadium lowers the price significantly, a 75% cut compared
to W. All four W-V crystals belong to the Pareto set and are
energetically and mechanically stable at 0 K [19].

Contrary to Ta and V, other high-mwf alloying elements
yield ambiguous results. Silicon-doped alloys, for
example, all belong to the Pareto set and alter the
behavior of pure tungsten in the same way as vanadium.
Unfortunately, they have quite high formation energies.
The magnetic 3d transition metals rank well, too. Except
for chromium, they all give rise to intrinsically less brittle
metals. Mechanical and energetic stability is sometimes an
issue for these materials, however. Rhenium, which is exp-
erimentally found to lower the ductile-to-brittle transition
temperature of tungsten [29], does not appear from this
Pareto analysis. Our calculations indeed find an improved
Cauchy pressure but suggest that the same improvement
can be achieved at better tradeoff conditions.

W-Ta and W-V compounds were investigated theoreti-
cally before, but based on the intrinsic ductility alone, their
promising performance was not observable [30]. Other

studies found Ta and V to embrittle W [25,31]. This
discrepancy between the intrinsic and macroscopic ductil-
ity of tungsten alloys remains to be elucidated, especially
in contrast to observations for other materials systems
(e.g., for stainless steel [32]).
All three test cases show that the minimum win fraction

orders the Pareto set in an intuitive way. Contrary to
conventional Pareto approaches, optimal designs can be
compared to each other and ranked, drastically reducing
the number of candidates that require closer inspection.
Using materials design as an example, the procedure has
been shown to yield meaningful results for both classic
engineering problems and state-of-the-art applications. It
can hence serve as an enabler for discoveries and develop-
ments in many research areas.
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