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Turbulence is generally associated with universal power-law spectra in scale ranges without significant

drive or damping. Although many examples of turbulent systems do not exhibit such an inertial range,

power-law spectra may still be observed. As a simple model for such situations, a modified version of the

Kuramoto-Sivashinsky equation is studied. By means of semianalytical and numerical studies, one finds

power laws with nonuniversal exponents in the spectral range for which the ratio of nonlinear and linear

time scales is (roughly) scale independent.
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Introduction.—Turbulence can generally be described as
spatiotemporal chaos in open systems, brought about by
the nonlinear interaction of many degrees of freedom under
out-of-equilibrium conditions. As such, it is ubiquitous in
nature and in the laboratory, and represents a fundamental
challenge to theoretical physics. Power-law energy spectra
constitute one of the most prominent features of such
systems. A first prediction along those lines was provided
for three-dimensional Navier-Stokes turbulence as early as
1941 by Kolmogorov [1]. The typical physical picture is
that power laws emerge on scales where both energy
injection and dissipation are negligible, i.e., in the so-
called inertial range. Here, on the basis of dimensional
analysis, the value of the spectral exponent is considered
to be determined entirely by the nonlinear energy transfer
rate, implying universality.

Interestingly, there exist numerous examples of turbu-
lent systems which display (simple or broken) power laws
even in the presence of multiscale drive and/or damping.
These include, e.g., flows generated by space-filling fractal
square grids [2], the mesoscale dynamics in dense bacterial
suspensions [3], and turbulence in astrophysical [4] and
laboratory [5] plasmas. At least in the latter case, numeri-
cal studies suggest that the observed power-law exponents
are not universal, however [5]. Instead, they appear to
depend on the underlying linear physics of the system.
This finding clearly calls for a theoretical understanding
that can also help to interpret and guide experimental as
well as numerical investigations.

In a previous investigation [6], a simple model for
density fluctuation spectra in magnetized laboratory plas-
mas was proposed, which is based on the notion of
disparate-scale interactions between small-scale eddies
and large-scale structures like mean or zonal flows, also
taking into account effective linear drive and/or (eddy or
Landau) damping. In this context, universal broken power
laws with an exponential cutoff were predicted. In the

present Letter, we consider an alternative scenario. It is
shown that one may obtain nonuniversal power laws in a
certain spectral range if the ratio of the relevant nonlinear
and linear time scales is (roughly) scale independent there.
Modified Kuramoto-Sivashinsky model.—To enable a

semianalytical treatment, we will employ a modified ver-
sion of one of the simplest models for spatiotemporal chaos
and turbulence, the Kuramoto-Sivashinsky equation (KSE),
which was originally put forward to describe turbulence in
magnetized plasmas [7,8], chemical reaction-diffusion pro-
cesses [9], and flame front propagation [10]. In general, it
can be used for the study of nonlinear, spatially extended
systems driven far from thermodynamic equilibrium by
long-wavelength instabilities in the presence of appropriate
(translational, parity, andGalilean) symmetries, and subject
to short-wavelength damping. In its one-dimensional form,
it reads

ut ¼ �uux ��uxx � �uxxxx (1)

for the velocity field uðx; tÞ with the positive parameters �
and �. The equation is supplemented by the periodic bound-
ary condition uðL; tÞ ¼ uð0; tÞ for all t � 0 and the initial
condition uðx; t ¼ 0Þ ¼ u0ðxÞ. Considering only functions
that belong to C4ð�Þ \ L2ð�Þ ensures that the system has
finite total kinetic energy. Equation (1) can be rewritten in
dimensionless units by substituting u ! �u=L, t !
tL2=�, x ! Lx, and � ! L2��. The nondimensionalized
form of the equation is the same as before, with the modi-
fication � ¼ 1. In the following, we keep the damping
parameter � undetermined, but all quantitative results are
obtained with � ¼ 1. The second- and fourth-order spatial
derivatives on the right-hand side of Eq. (1) provide an
energy source and sink, respectively. Similar to three-
dimensional Navier-Stokes turbulence, energy is injected
on large scales and dissipated on small scales, with the
nonlinear term providing the interscale transfer.
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The periodic boundary conditions suggest a representa-
tion of uðx; tÞ in terms of a Fourier series defined as

uðx; tÞ ¼ X
n2Z

ûðkn; tÞeiknx; (2)

where the wave numbers kn ¼ nð2�=LÞ are discrete and
n 2 Z. From the condition that uðx; tÞ is real, it follows that
ûðkn; tÞ ¼ ûð�kn; tÞ where the overbar denotes complex
conjugation. Expressing Eq. (1) in terms of Fourier coef-
ficients gives

ûtðknÞ ¼ � ikn
2

X
m2Z

ûðkn � kmÞûðkmÞ þ ðk2n � �k4nÞûðknÞ;

(3)

where we have suppressed the time dependence for the
ease of notation. Linearly, each mode is characterized by
the drive or damping rate � ¼ k2n � �k4n. The nonlinear
term does not inject or dissipate energy (i.e., summed over
n, it gives zero), but only redistributes it among the modes.

We now change the linear term according to
ðk2n � �k4nÞ ! ðk2n � �k4nÞ=ð1þ bk4nÞ, such that we obtain
the modified KSE

ûtðknÞ ¼ � ikn
2

X
m2Z

ûðkn � kmÞûðkmÞ þ k2n � �k4n
1þ bk4n

ûðknÞ;

(4)

with a constant damping rate of �=b in the high wave
number limit (see Fig. 1). One motivation for such a
modification comes from the (gyro-)kinetic theory of mag-
netized plasmas where the growth rates of linear instabil-
ities tend to a negative constant for large perpendicular
wave numbers [5]. Moreover, this is one of the simplest
realizations of a controlled deviation from the classical
inertial range. Note that the real-space representation of

the modified linear term is well defined for all functions in
the domain C4ð�Þ \ L2ð�Þ.
Energetics.—The energy budget equation corresponding

to the modified version of Eq. (3) reads in Fourier space

@Eðkn; tÞ
@t

¼ X
m2Z

Tðkn; km; tÞ þ 2
k2n � �k4n
1þ bk4n

Eðkn; tÞ; (5)

where Tðkn;km;tÞ¼kn=ðûðkn;tÞûðkn�km;tÞûðkm;tÞÞ and
Eðkn; tÞ ¼ jûðkn; tÞj2. We shall call the latter the energy
of the kn mode, while Tðkn; km; tÞ will be referred to as the
nonlinear energy transfer function. In contrast to incom-
pressible fluid turbulence, it is not antisymmetric with
respect to an interchange of kn and km. Equation (5) reflects
the fact that energy transfer takes place via three-wave
interactions with kn þ km þ kq ¼ 0. This transfer is con-

servative, i.e.,

@tEðkn; tÞ þ @tEðkm; tÞ þ @tEðkq; tÞ ¼ 0; (6)

where E denotes the energy of a mode in a purely nonlinear
subsystem that has been truncated to the three wave num-
bers kn, km, and kq. In a quasistationary turbulent state, the

time average (denoted by h�i�) of Eq. (5) reads
X
m2Z

hTðkn; km; tÞi� þ 2
k2n � �k4n
1þ bk4n

EðknÞ ¼ 0; (7)

where EðknÞ denotes hEðkn; tÞi�.
Energy transfer physics.—To gain insight into the turbu-

lent dynamics of Eq. (4), it is solved numerically, employing
the exponential time differencing fourth-order Runge-Kutta
algorithm [11,12] and changing the normalized system size
to 32�. We focus our investigations on the physics of the
net nonlinear energy transfer. As it will turn out, the latter
is dominated by nonlocal interactions in wave number
space. Two neighboring high-k modes exchange energy
via the coupling to a third mode with k� 1. This can
be quantified by introducing the scale disparity para-
meter Sðk;pÞ¼maxfjkj;jpj;jk�pjg=minfjkj;jpj;jk�pjg
defined in Refs. [13,14]. We shall follow the literature
and refer to interactions with small (large) values of S as
local (nonlocal). In Ref. [14], the observation was made
that in Burgers turbulence, the net energy transfer in the
inertial and dissipation ranges is dominated by local inter-
actions, similar to Navier-Stokes turbulence. Our numeri-
cal simulations show that this type of behavior carries over
to the original KSE. To our knowledge, this has not been
shown before. The modified KSE exhibits a completely
different scenario, however. The function Tðkn; SÞ, charac-
terizing the energy transfer into mode kn via triads with the
scale disparity parameter S and defined over logarithmic S
bands like in Ref. [14], is displayed in Fig. 2 as a function
of S=kn for three different values of kn. In all three cases,
one finds a strong peak at S=kn � 1, implying that for
Eq. (4), the net energy transfer at large wave numbers is
dominated by nonlocal interactions, with a k� 1 mode
acting as kind of a catalyst. Nevertheless, the energy
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FIG. 1 (color online). Linear growth or damping rate � as a
function of wave number k for the original and modified
Kuramoto-Sivashinski equation.
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cascade itself is local. The relevant triadic interactions can
be realized in two different ways: km � kn and kn � km
small or km small and kn � km � kn. Defining for conve-
nience kq ¼ km � kn, the nonlinearity becomes

kn
P

q2ZPðkn; kqÞ where the summand represents the triple

correlation =ðhûðkn;tÞûðkq;tÞûðknþkq;tÞi�Þ. Considering

the numerical results mentioned before, we have the fol-
lowing picture of the energy transfer in Fourier space. A
large mode kn receives energy (on average) mainly from
the mode kn � kd, where kd is a relatively small wave
number in the drive range that mediates the transfer. Part
of this energy is dissipated and the rest is forwarded
primarily to the mode kn þ kd again via kd. The first
term in Eq. (7) has to balance the energy dissipated by
the kn mode which is the difference between the energy
received by kn and the one given by kn.

Closure model and resulting energy spectra.—To find a
closure model for Eq. (7), we search for an approximation
of Pðkn; kqÞ at large wave numbers. The form of P pro-

duced by direct numerical simulations is shown in Fig. 3. It
confirms the above picture of nonlinear energy transfer.
The most dominant coupling is indeed with modes in the
drive range, and from the minimum and maximum of

the curve one sees that kd � 1=
ffiffiffi
2

p
, which is nearly the

linearly most unstable mode for small b. The curve is
approximately antisymmetric about kq ¼ 0. However, it

is important that the antisymmetry is not exact: the maxi-
mum (at kmax

q � �kd) is slightly higher than the absolute

value of the minimum (at kmin
q � �kmax

q ). This discrepancy

is the reason that, at high wave numbers, the spectrum
decreases when kn increases. Hence, summing over kq will

lead to a positive contribution that cancels the linear
term in Eq. (7) which is negative for high kn. For an
approximation of the triple correlation function P, we
model the form of the curve in Fig. 3 by fPðkqÞ ¼
�kqEðkn þ kdÞc �ðkqÞ � kqEðkn � kdÞc��ðkqÞ where

c �ðkqÞ is a localized function centered at and symmetric

around kq ¼ � where the value of � can depend on kd. The

small asymmetry of fP is provided by the slightly different
prefactors Eðkn � kdÞ and Eðkn þ kdÞ and kq ensures the

change in sign.
This model allows for an analytically tractable closure

of the spectral energy budget equation at high kn as

X
q2Z

fPðkqÞ � 1

�k

Z þ1

�1
fPðkqÞdkq

¼��ð�Þ
�k

ðEðknþ kdÞ�Eðkn� kdÞÞ; (8)

where�ð�Þ¼R
kqc �ðkqÞdkq¼��ð��Þ. Considering that

kd � 1=
ffiffiffi
2

p � kn, we have Eðkn � kdÞ � Eðkn þ kdÞ �
� ffiffiffi

2
p

dE=dk where a continuum of wave numbers is
assumed. Hence,

� 1

�
k
dE

dk
þ 2

k2 � �k4

1þ bk4
EðkÞ ¼ 0; (9)

where � ¼ �k=ð2 ffiffiffi
2

p
�ð�ÞÞ. In physical units, � has the

dimension of time, and at high k, 1=� can be interpreted as
a typical nonlinear frequency. The factor 2 takes into
account that for high kn, the nonlinear energy transfer
function shows the same structure also at small km and
large kn � km as we discussed previously. The solution of
the above differential equation is readily obtained as

EðkÞ¼ ~E0exp

�
�ffiffiffi
b

p arctanð ffiffiffi
b

p
k2Þ���

2b
lnð1þbk4Þ

�
; (10)

with ~E0 a constant of integration. In the limit of large wave
numbers, the second term in the exponent dominates and
leads to

EðkÞ ¼ E0k
�2��=b; (11)

where E0 is a constant. This is a power-law spectrum with a
nonuniversal scaling exponent. The latter is set by the ratio

FIG. 3 (color online). Triple correlation normalized to Eðkn þ
kmin
q Þ as a function of kq for kn ¼ 50 and b ¼ 0:036 compared to

the model fPðkqÞ=Eðkn þ kmin
q Þ denoted by blue crosses.

FIG. 2 (color online). Net energy transfer into mode kn via
triads with the scale disparity parameter S as a function of S
normalized to kn.
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of the linear damping rate �=b and the nonlinear frequency

1=�. An analytically convenient form for c is c ðkqÞ ¼
a1e

ðkq�a2Þ2=a3 where a1, a2, and a3 are free parameters.
Their values may be determined by a fit to the numerical
data which is shown with blue crosses in Fig. 3. One can
easily check that this particular choice for c gives for the
ratio between the maximum and the absolute value of the
minimum

fPð�kdÞ
jfPðkdÞj

� ð1þ re4kda2=a3Þ
ð1þ re�4kda2=a3Þ e

�4kda2=a3 ; (12)

where r ¼ Eðkn � kdÞ=Eðkn þ kdÞ. A least squares fit
gives a1 � 0:1403, a2 � 0:2578, and a3 � 0:7564 which
leads to fPð�kdÞ=jfPðkdÞj � 1:217. The corresponding
numerical value is 1.184 and the good agreement signifies
that the particular form of fP chosen captures well the
important asymmetry of the triple correlation.

Consistency checks.—To check for consistency, we also
computed numerically the energy spectra for different
values of the damping rate �=b. As can be seen in Fig. 4,
one can thus confirm that a constant high-k damping rate
leads to an energy spectrum in the form of a power law (in
contrast to the standard KSE, which displays an exponen-
tial falloff), and that the associated spectral exponents are
indeed proportional to the damping rate. According to a
linear fit to the data in Fig. 5, one obtains� � 0:25, whereas
the fitting procedure in the context of Fig. 3 yields a slightly
larger value of � � 0:4. The reason for this is that the area
enclosed by the ragged curve (which is essential for com-
puting the precise value of the energy transfer) is nearly 1.6
times larger than the area under the blue curve in Fig. 3.
Taking this correction into account, the two approaches
agree very well, providing a consistent overall picture.

Conclusions.—Motivated by the fact that many turbulent
systems in nature as well as in the laboratory exhibit
power-law spectra even in the absence of a clean inertial
range, we studied as a simple model system a modified

version of the Kuramoto-Sivashinsky equation, with a
constant high-k damping rate. Via semianalytical and nu-
merical studies, we demonstrated the existence of power
laws with nonuniversal scaling exponents in the spectral
range for which the ratio of nonlinear and linear time scales
is (roughly) scale independent. Such situations may arise in
various physical systems with multiscale drive and/or
damping, including, in particular, magnetized laboratory
plasmas [15]. In this context, the present work provides a
plausible explanation for the observation of nonuniversal
power laws in numerical studies [5].
Another possible application of these findings is kinetic

Alfvén wave turbulence, as it is thought to occur, e.g., in
the solar wind. In this case, one has to compare the

nonlinear energy transfer rates (which scale like k4=3? at

sub-ion-gyroradius scales) with the Landau damping rates
of kinetic Alfvén waves. The latter may have rather com-
plex k dependencies, with details depending on the ion-to-
electron temperature ratio and the plasma � [16]. There
seem to exist parameter regimes and k ranges for which the
ratio of linear and nonlinear frequencies is roughly scale
independent, such that nonuniversal power-law spectra
may emerge.
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