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We decompose the energy error of any variational density functional theory calculation into a

contribution due to the approximate functional and that due to the approximate density. Typically, the

functional error dominates, but in many interesting situations the density-driven error dominates.

Examples range from calculations of electron affinities to preferred geometries of ions and radicals in

solution. In these abnormal cases, the error in density functional theory can be greatly reduced by using a

more accurate density. A small orbital gap often indicates a substantial density-driven error.
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Density functional theory (DFT) began with the
Thomas-Fermi (TF) approximation [1,2], which is now
used in many branches of physics [3]. For electronic struc-
ture, the Kohn-Sham (KS) scheme [4] is now applied in
many other disciplines, from chemistry to materials sci-
ence and beyond. In all practical calculations, some form
of density functional approximation is used, leading to
errors in the property being calculated. A persistent weak-
ness of the method has been an inability to control these
errors or systematically improve approximations [5]. There
are no error bars on DFT energies. Traditionally, all that
can be used to judge the reliability of a calculation [6] is
experience with specific classes of systems and properties.

Many researchers worldwide are focused on improving
approximations to the ground-state energy functional, but
no such improvements are reported here. On the contrary,
we introduce a general method for analyzing the error in any
such approximate DFT calculation. We find the somewhat
surprising result that entire classes of errors are often mis-
classified.We also showhow such errors can often begreatly
reduced with relatively little computational cost. We dem-
onstrate the power of our method by curing the infamous
self-interaction error (SIE) that bedevils DFT calculations
of ions and radicals in solution.We illustrate with numerous
examples from the chemical literature, but our reasoning
applies to approximate DFT calculations in any situation.

In ground-state DFT, the energy is written as

E ¼ min
n

�
F½n� þ

Z
d3rnðrÞvðrÞ

�
; (1)

where vðrÞ is the one-body potential of the system (e.g., the
sum of attractions to the nuclei), while F½n� is a functional
[7] of the one-electron density nðrÞ and is independent of
vðrÞ. In practical DFT calculations, F½n� is approximated,
call it ~F½n�. The minimizing density ~nðrÞ is therefore also
approximate, so the energy error is

�E ¼ ~E� E ¼ �EF þ�ED; (2)

where�EF ¼ ~F½n� � F½n� is the functional error, because
it is the error made by the functional on nðrÞ. The density-
driven error is due to the error in ~nðrÞ, and �ED is defined
by Eq. (2).
A Thomas-Fermi calculation is a pure DFT calculation,

in which F½n� itself is approximated. Because of the inabil-
ity to treat quantum oscillations leading to shell structure,
the density-driven error dominates and is typically much
larger than �EF. Modern attempts at pure DFT approxi-
mations (i.e., orbital-free DFT [8–10]) are rarely tested
self-consistently, for precisely this reason. Modern calcu-
lations employ the KS scheme in which only a small
fraction of F½n� is approximated, the so-called exchange-
correlation contribution, EXC½n�. Even with the simple
local density approximation (LDA), �EF usually domi-
nates over �ED. Densities are often so accurate that it is
common practice to test a new approximation with orbitals
from a less accurate one [11–13]. We denote such calcu-
lations as normal, as their energetic errors largely reflect
the true error in the approximation.
But in a small fraction of calculations, �ED dominates

over �EF. In such abnormal calculations the typical error
of a given approximation appears abnormally large. Our
analysis shows that this is a qualitatively different (and
more insidious) error, due to an unusual sensitivity to the
XC potential, leading to a poor-quality density. Such errors
should not be directly attributed to the given approxima-
tion, but rather to the type of calculation, and can be greatly
reduced by using more accurate densities, sometimes at
little additional cost.
The infamous SIE [14] made by standard DFT approx-

imations is well known to be extreme when an extra
electron is added to a neutral atom or molecule. In LDA,
H� is unbound because of this [15]. But recently [16] it has
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been shown that, if more accurate densities are used instead
of self-consistent densities, the errors are reduced so much
that they are less than those of ionization potentials. The
SIE is reduced by adding an extra electron.

We begin with pure DFT, such as TF calculations for
total atomic energies. For Ra (Z ¼ 88), the TF error is
about �3:4 kilohartree out of �23 kilohartree, and the
relative error vanishes as Z ! 1 [17]. But �EF is only
�0:62 kilohartree, and so �ED is about 4 times larger.
The errors in self-consistent TF atomic calculations are
mainly due to the error in the density, and the main aim of
orbital-free approaches should be to reduce this error.

But most modern calculations use the KS scheme,
solving self-consistently

f�r2=2þ vSðrÞg�iðrÞ ¼ �i�iðrÞ; (3)

where �iðrÞ is a KS orbital and �i its eigenvalue. Here, the
density of the orbitals is defined to match the true density,
and the energy can be found from

F½n� ¼ TS½n� þU½n� þ EXC½n�; (4)

where TS is the kinetic energy of the orbitals, U their
Hartree energy, and

vSðrÞ ¼ vðrÞ þ
Z

d3r
nðrÞ

jr� r0j þ vXCðrÞ;

vXCðrÞ ¼ �EXC

�nðrÞ : (5)

Approximations in common use are LDA [4], the general-
ized gradient approximation, such as the Perdew-Burke-
Ernzerhof (PBE) functional [18], and hybrid functionals
[19,20]. The energy-functional error is transmitted to the
density via vXCðrÞ. The SIE of standard approximations
causes vXCðrÞ to decay too rapidly with r, so that vSðrÞ is
too shallow [21], and the �i are insufficiently deep by
several eV. However, an almost constant shift in vSðrÞ
has little effect on ~nðrÞ and therefore on E.

To illustrate our method, we apply it to the simplest
nontrivial system, two-electron ions, with nuclear charge
Z varying down to 1 (H�). For He (and any Z � 2) with
standard approximations, ~nðrÞ is indistinguishable from
nðrÞ, despite the large errors in vSðrÞ and �i. Thus, �EF

is 0.3 eV, while �ED is only�0:04 eV, and the calculation
is normal. But the energy error for Z � 2 in Fig. 1 behaves
rather smoothly until around Zc � 1:23, where it suddenly
changes behavior. As Z is reduced from 2 (He) to 1 (H�), a
fraction of an electron [15] unbinds (about 0.3) in a stan-
dard DFT calculation [18], greatly increasing the error.

Our analysis explains the origin of this error in general
terms. The solid colored lines decompose the error into
�EF and �ED. Around Zc � 1:23, where �1s vanishes and
the system begins to ionize, �ED grows and leads to the
qualitative change in�E. Nothing special happens to�EF,
which is almost zero for H� and is far less than for He.
A DFT calculation with an accurate two-electron density

produces a smaller error for the electron affinity of H than
for the ionization energy of He [16].
In an abnormal calculation, the system is peculiarly

sensitive to the error in vXCðrÞ, so that ~nðrÞ differs signi-
ficantly from nðrÞ, enhancing �ED. The large error in
density is very visible in Fig. 2, where the PBE density
integrates to only 1.7 electrons. From Fig. 1, one sees that
the PBE calculation is (somewhat accidentally) almost
exact for H� when evaluated on the exact density.
Our method can be applied to any small system where

accurate densities can be calculated via quantum chemical
methods, and it will show when an error is density driven.
Butmuchof thevalue ofDFTis in its relatively low computa-
tional cost, allowing large systems to be treated,where highly
accurate densities are prohibitively expensive. However, if
we apply linear response theory to the KS system:

�nðrÞ ¼
Z

d3r0�Sðr; r0Þ�vSðr0Þ; (6)
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FIG. 1 (color online). Errors in ground-state energies of two-
electron ions as a function of nuclear charge: PBE energies
evaluated on exact [53,54] (solid lines) and Hartree-Fock (dotted
lines) densities [55].
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FIG. 2 (color online). Exact [Quantum Monte Carlo (QMC)
calculations [53,54]] and PBE radial densities for H� ðZ ¼ 1Þ
and He ðZ ¼ 2Þ.
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where �nðrÞ is the change in density induced by �vSðrÞ,

�Sðr; r0Þ ¼
X
i;j

ðfi � fjÞ
��

i ðrÞ��
j ðrÞ�iðr0Þ�jðr0Þ

�i � �j þ i0þ
(7)

is the static density-density KS response function and fi is
the KS orbital occupation factor [22]. The smallest denomi-
nator is ��g, the HOMO-LUMO gap. Normally, the dif-

ference between the exact and approximate vSðrÞ is small,
ignoring any constant shift. If�~�g is not unusually small, this

error leads to a small error in ~nðrÞ. But if�~�g is small, even a

small error invSðrÞ can produce a large change in the density,
and self-consistency only increases this effect. Thus, small
�~�g suggests a large density error, and we plot ��PBEg in

Fig. 1. For two-electron ions, the PBE LUMO is unbound, so
that��PBEg ¼ j�PBEHOMOj. AtZc this vanishes. For other atomic

anions with standard approximations, ~�HOMO > 0, i.e., a
resonance [16]. Finite atom-centered basis sets turn this
resonance into an eigenstate with an accurate density and
produce accurate electron affinities [23].

Additionally, we need only a more accurate density than
the poor density of the abnormal DFT calculation itself.
For SIE, we know that most of the error in vSðrÞ can be
cured with orbital-dependent functionals [14,24,25], and
the Hartree-Fock density is often sufficient and is available
in all quantum chemical codes. Thus, the SIE density-
driven error of standard approximations will often be cured
by evaluating DFT energies on HF densities, called HF-
DFT [16], which are not much more expensive than self-
consistent DFT calculations. This method yields extremely
small errors (about 0.05 eV) for the electron affinities of
atoms and small molecules [16,26]. Occasionally, spin
contamination make HF calculations yield poor density,
and so HF-DFT fails.

Our next abnormality is well known [27]. DFT calcu-
lations of molecular dissociation energies (Eb) are usefully
accurate with generalized gradient approximations, and
more so with hybrid functionals. These errors are often
about 0:1 eV=bond [28], found by subtracting the calcu-
lated molecular energy at its minimum from the sum of
calculated atomic energies. This is because, if one simply
increases the bond lengths to very large values, the frag-
ments fail to dissociate into neutral atoms. The prototyp-
ical case is NaCl, which dissociates intoNa0:4 and Cl�0:4 in
a PBE calculation [27]. The large error in density for the
stretched bond yields �Eb � 1 eV, as shown as the differ-
ence between PBE and HF-PBE calculations in Fig. 3.
In this case, the HF density spontaneously suddenly
switches to neutral atoms at about 5.6 Å, but is correct in
the dissociation limit. The common practice of using iso-
lated atomic calculations is inconsistent, but removes the
density-driven error, because isolated atoms are normal.
Incorrect dissociation occurs whenever the approximate
HOMO of one is below the LUMO of the other [27], which
guarantees a vanishing �~�g when the bond is greatly

stretched. The exact vXCðrÞ contains a step between the
atoms which is missed by semilocal approximations.
When modern functionals were first being adopted

for molecular calculations, they were sometimes eval-
uated on HF densities [11–13], so as to compare only
functional errors. More recently, Janesko and Scuseria
[29] showed that this led to substantial improvement
in transition-state barriers. The prototype of such barriers
is the symmetricH—H2 transition state, which is improved
by almost a factor of 2 by using HF-PBE instead of
PBE. Here ��PBEg is not quite as small (2.5 eV) as in

other cases, but the improvement upon using the HF den-
sities is still substantial. High-level ab initio calculations
yield an energy barrier of 0.43 eV [29], where the PBE
calculation gives a value of 0.16 eV and that of
HF-PBE gives 0.25 eV. Analysis of a collection of barriers
in Table 1 of Ref. [30] shows that, in cases where the
HF DFT barrier differs from the self-consistent barrier by
more than, for instance 25%, the mean absolute error is
more than 3 times smaller than DFT. The sole exception is
the t-N2H2 hydrogen transfer forward reaction barrier,
where the HF density is spin contaminated (just as in the
molecule CN [26]).
Finally, we report new applications where we drive out

the density-driven error. The potential energy surfaces
(PES) of odd-electron radical complexes like OH � Cl�
and OH � H2O are important in radiation, atmospheric
and environmental chemistry, as well as in cell biology
[31–34]. For example, how anions behave in droplets is
critical to understanding aerosols in the atmosphere [35].
Accepted wisdom is that anions near an air-water interface,
being less screened, have lower concentrations [36]. But
recent classical molecular dynamics (MD) simulations
have shown the opposite [36,37].
This controversy invites an ab initio MD approach, to

either reinforce or debunk classical MD. However, DFT
approximations have problems here [25,38–40]. Several
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FIG. 3 (color online). Energy of NaCl as a function of Na-Cl
distance in several calculations, and the PBE HOMO-LUMO
gap.
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studies show two minima in the ground-state PES: a nor-
mal hydrogen bond and a two-center, three-electron inter-
acting hemibond [41]. High-level quantum chemical
calculations [41] and self-interaction corrected DFT cal-
culations [25,42] reveal that the true PES has only one
minimum, the hydrogen-bonding structure. Hemibonding
is overstabilized in approximate DFT because three elec-
trons incorrectly delocalize over two atoms.

In Fig. 4, we show plots of the PES of the HO � Cl�
complex using different methods. The O—H bond length
was fixed at 1 Å. The binding energy is

�Eb ¼ EHO�Cl�ðR; �Þ � ðEHO� þ ECl�Þ; (8)

where EHO�Cl�ðR; �Þ is the energy on a given geometry with
Cl—O distance R, and Cl—O—H angle �, EHO� is the
energy of the OH radical, and ECl� is the energy of the Cl
anion. The difference between the energy minima of
hydrogen-bonding and hemibonding structures in the PBE
calculation is less than 0.01 eV. A small ��PBEg in the

hydrogen-bonding structure (� 0:32 eV) suggests a large
density-driven error. We find that the HF-PBE calculation
follows the same trends and produces the same minima as
the coupled-cluster method with singles, doubles, and per-
turbative triples [CCSD(T)], although the binding energies
themselves have errors of up to 0.09 eV. Similar conclu-
sions are found for the PES of the HO � H2O complex [43].

In every example of density-driven error in this Letter,
the HOMO-LUMO gap of the DFT calculation is small.
We end with an example in which a small gap does not
produce a density-driven error. Much recent research is
focused on localization errors of approximations [44], and
many failures can be related to such errors. Consider the
classic example of a severe SIE, namely, stretched H2

þ
with a standard functional. As the bond is stretched, the gap
rapidly shrinks, suggesting abnormality, but when a HF-
DFT calculation is performed, the error barely changes.

Thus, this is a normal calculation whose error is funct-
ional driven, not density driven, and the HF-DFT calcula-
tion does not reduce the error. The small gap is due to
stretching the bond, not a sign of an incipient density-
driven error [45].
Our method for classifying DFT errors is general.

Declaring a calculation abnormal depends on both the
energy being calculated (total, ionization, bond, etc.) and
the approximation being used. The error in any approxi-
mation can be studied in this way. For example, methods
that begin from exact exchange (such as RPA [46–48] or
ab initio DFT [49]) which yield better potentials could be
examined to see if such improvements yield better ener-
gies. We focused here on the SIE because of its ubiquity,
but one can apply the same reasoning to, e.g., the correla-
tion energy itself [50,51] or the error in the KS kinetic
energy in orbital-free approximations [9]. The classic
examples of stretched H2 and H2

þ are normal, because
self-consistent densities (restricted in the case of H2) are
close to exact densities. The myriad materials and mole-
cules where standard DFT fails should now be reexamined
to distinguish between true errors (i.e., large energy errors
even on exact densities) and density-driven errors, which
are system and property dependent.
Calculation details are given in the Supplemental

Material [52].
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