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When exposed to ultraintense x-radiation sources such as free electron lasers (FELs) the innermost

electronic shell can efficiently be emptied, creating a transient hollow atom or molecule. Understanding

the femtosecond dynamics of such systems is fundamental to achieving atomic resolution in flash

diffraction imaging of noncrystallized complex biological samples. We demonstrate the capacity of a

correlation method called ‘‘partial covariance mapping’’ to probe the electron dynamics of neon atoms

exposed to intense 8 fs pulses of 1062 eV photons. A complete picture of ionization processes competing

in hollow atom formation and decay is visualized with unprecedented ease and the map reveals hitherto

unobserved nonlinear sequences of photoionization and Auger events. The technique is particularly well

suited to the high counting rate inherent in FEL experiments.

DOI: 10.1103/PhysRevLett.111.073002 PACS numbers: 32.80.Aa, 32.80.Fb, 32.80.Hd

Imaging at the atomic level can use very short, intense
x-ray pulses from a free electron laser (FEL) [1] to record
the diffraction pattern from biological molecules before
they explode due to massive photoionization [2]. Such
imaging has been demonstrated with resolution of tens of
nanometers [3], but atomic resolution will require under-
standing the dynamics of fast multiphoton ionization from
inner shells. This can create hollow atoms [4,5] and highly
charged species [6] which modify the diffraction pattern
[7]. In this Letter we demonstrate the capacity of covari-
ance mapping [8] to reveal the electron dynamics of multi-
photon hollow atom formation at FELs [9]. We introduce
partial covariance so compensating for the strong fluctua-
tions in pulse energy, which spoil conventional covariance
maps. The technique allows us to identify hitherto unob-
served photoionization and Auger sequences, their branch-
ing ratios and femtosecond dynamics.

While some useful information on electron dynamics in
intense x-ray fields can be obtained by monitoring the ion
charge states [5], this information is incomplete because

different ionization sequences can lead to the same product.
In particular, for the formation of transient hollow atoms
which cannot be discerned this way, electron energy spectra
are required. High charge states produced in such experi-
ments generate spectra where different electron energies
overlap and can be untangled only in special cases [5]. An
unambiguous identification of ionization sequences requires
correlation of at least pairs of electron energies. Coincidence
techniques [10] can reveal such correlations but require low
counting rates, typically 1 coincidence event per 10 to 100
radiation pulses. Reducing the data acquisition to such a low
level [11] is impracticable at FELs, which are single-user
facilities operating at low repetition rates. To overcome these
experimental obstacleswepresent an enhancedversion of the
covariance mapping technique [8].
The experiment was performed using the Atomic,

Molecular, and Optical science instrument of the Linac
Coherent Light Source (LCLS) FEL at the SLAC National
Accelerator Laboratory, Stanford [12]. X-rays are focused
on a pulsed jet of Ne atoms and the emitted electrons are
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guided by the field lines of a long magnetic bottle spec-
trometer [13], custom-made for the present purpose,
towards the detector. A transient digitizer records a time-
of-flight (TOF) spectrum of electrons created at each laser
shot and sends it to fast data storage and to a data analysis
system [14], which converts the spectra from TOF to
energy and calculates the covariance map. Both the time-
averaged electron energy spectrum and the corresponding
covariance map are displayed in real time to monitor the
data quality. (More experimental details including a
schematic figure, Fig. S1, are given in the Supplemental
Material [15]).

If two or more electrons are liberated from the target by
theX-ray pulse and one characteristic electron is detected at
energy Ex there is a higher than average probability of
detecting a second electron from the same event at another
energy Ey. The existence of the correlated electrons can be

revealed by calculating the covariance of the signal at Ex

with the signal at other energies, which include Ey.

Formally this means taking a row vector of the single-shot
energy spectrum,XðExÞ, transposing it into a column copy,
YðEyÞ ¼ XðExÞT , and calculating a covariance matrix

covðY;XÞ ¼ hYXi � hYihXi; (1)

where hi denotes an average taken over many laser shots (see
Fig. S2 of the Supplemental Material [15] for instances of the
single-shot spectra; note that the counting rate is typically 30
electrons per radiation pulse—300 to 3000-fold higher than
in coincidence techniques). The covariance matrix can be
visualized as a map, as shown in Fig. 1, of (at least) two-
electron processes, which appear as positive features. The
important property of the covariance estimator (unlike a
correlation coefficient) is that the feature volumes are directly
proportional to the probability of the underlying physics. This
property originates in Poissonian fluctuations of the number
of atoms in the focal region and is related to the fact that the
variance of a Poissonian process is equal to its mean.

The simple covariance technique outlined above often
produces artificial correlations which are not of physical
interest. For example, if the laser pulse energy increases
from one shot to the next, there are more electrons pro-
duced in every process, and every feature on the map
becomes correlated with every other via the common
influence of laser fluctuations. Usually, it is impossible to
keep the experimental conditions exactly the same from
shot to shot and the only way to suppress the unwanted
common correlations is to reduce the counting rate and
run the experiment for a longer time. In practice, the
FEL X-ray pulses fluctuate widely (see Fig. S3 of the
Supplemental Material [15]).

To accommodate the high counting rate characteristic
for FEL experiments we enhance the simple covariance
mapping technique by monitoring the X-ray pulse energy,
I, at every shot and use this information to calculate partial
covariance [16]

pcovðY;X;IÞ¼covðY;XÞ�covðY;IÞcovðI;XÞ=covðI;IÞ:
(2)

The second term in this formula can be regarded as a
correction for fluctuations in I. The result is equivalent to
holding the pulse energy constant, inducing only a little
extra noise due to the statistical origin of the correction.
Equation (2) can be extended easily to compensate for
more than one influence on the raw signals, provided the
relevant parameters are monitored at every shot.
Equation (2) compensates for unwanted correlations

linear with I. It also compensates for the majority of non-
linear correlations induced by I because the signal is
corrected at its mean level rather than at zero. In fact,
any uncompensated nonlinear artifacts are not discernible
under our experimental conditions, confirming that Eq. (2)
is applicable to quite large fluctuations of the pulse energy
(see Fig. S3 of the Supplemental Material [15]).
We have chosen neon as a showcase system because it is

the simplest atom where a plethora of single-photon and
multiphoton sequential absorption and decay processes are
possible. In Fig. 2 we show schematics of multiphoton

FIG. 1 (color online). A partial covariance map revealing
correlations between electrons emitted from neon (and from
some N2 and water vapor contamination). The map is con-
structed shot by shot from electron energy spectra recorded at
the photon energy of 1062 eV, which are shown along the x and y
axes after averaging over 480 000 FEL shots. Volumes of the
features on the map give relative probabilities of various ioniza-
tion sequences, which can be classified as: (a) Ne core-core;
(b) H2O core-core, core-Auger, and Auger-Auger; (c) Ne Auger-
Auger; (d) Ne valence-valence; (e) N2 core-Auger; (f) H2O core-
valence; (g) Ne core-Auger; (h) Ne core-valence; (i) double
Auger and secondary electrons from electrode surfaces; and
(j) Ne main (core) photoelectron line. Note that the gray scale
(false-color scale) is nonlinear to accommodate a large dynamic
range.
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processes and related kinetic energies of the emitted photo-
and/or Auger electrons. We demonstrate that the signatures
for all of the sequences illustrated are present in our
covariance maps, which provide the unique capability to
distinguish them in an efficient way.

Figure 1 shows an overview partial covariance map of
neon recorded at the photon energy of 1062 eV (with a
nominal pulse duration of 8 fs and a nominal pulse energy
of 0.11 mJ) which was chosen to access the core (1s)
electrons of the neutral species (870.2 eV binding energy
[17]). The off-diagonal features are associated with pair-
wise correlations of the electrons ejected upon sequential
x-ray multiphoton absorption by Ne atoms. Conventional,
one-dimensional electron energy spectra are shown along
the x and y axes. The peaks discernible in these spectra are
revealed as subdivided into several more features on the
map. For example, the 0–200 eV kinetic energy part
reflects features associated with core-core, core-Auger,
and core-valence processes according to their inherent
electron-electron correlations.

The map is symmetric about the diagonal because the
same spectra are used for both axes. The strong autocorre-
lation line on the diagonal has the same origin: an electron
detected with energy Ex will always be present in the
covariance map at Ey ¼ Ex, unlike electrons with different

energies, which have the detection and collection effi-
ciency factored in. The symmetry and the autocorrelation
line are not present if different x, y spectra are used, for
example, in electron-ion covariance mapping [18].

Ionization of background gases, such as water or nitro-
gen, is displaced from neon processes in the map and does
not interfere with the analysis. The N2 core-Auger island

was useful for calibration of the TOF-to-energy conversion
(see the Supplemental Material [15]).
The x-ray pulses suffer from photon energy jitter, typi-

cally 0.5% of the nominal photon energy. The actual pho-
ton energy can be derived from the FEL electron beam
energy, which is measured for every shot. This makes it
possible to compensate single-shot spectra for the jitter
before using them to construct the map. The compensation
sharpens photoelectron peaks but broadens Auger ones (if
they cannot be treated separately). On the map it removes
all distortions in the most interesting core-core region, but
leaves some residual distortion in the core-Auger region.
The Ne core-core and core-valence regions are magni-

fied in Fig. 3. The autocorrelation line dominates the map
near the diagonal and secondary electrons released from
the surface of the permanent magnet near the focal spot
mask other features below 30 eV. A summary of the
identified pairwise electron correlations, with the kinetic
energies and assignments, is given in Table I.
Among the dynamical processes depicted in Fig. 3, a

likely ionization sequence is the photoelectron-Auger
electron-photoelectron-Auger electron (PAPA) process
[21], where a photoelectron (P) is ejected from the core,
followed by ejection of an Auger electron (A), followed by
PA again. This process gives rise to the relatively intense
peaks at the energy positions (136 eV, 192 eV) labeled in
Figs. 2 and 3 as PAP. Here, and henceforward, we use the
notation 1s ¼ K, 2s ¼ L, and 2p ¼ V to label the orbitals.
When P is without a subscript it means ejection from the K
shell. Similarly, when A is without a subscript, it refers to
an Auger process involving two electrons from the V shell.
The two detected particles giving rise to the covariance
signal are indicated by bold type.

FIG. 2 (color online). Ionization processes in neon induced by
intense 1062 eV photons. The processes are ordered according to
the kinetic energy of the final electron. Four examples of these
processes are shown diagrammatically below. The first process
(PP) competes with the second one (PAP). Covariance mapping
is required to separate the last two processes (PAPVP and
DKVAP) because the final kinetic energy is the same.

FIG. 3 (color online). Identification of neon ionization pro-
cesses in the core-core (left) and core-valence (right) correlation
regions. The top of the autocorrelation line is cutoff to show the
features behind. Symbols P, D, and A denote, respectively,
ejection of a photoelectron, two photoelectrons (direct double
photoionization by a single photon), and an Auger electron. The
other notation used is explained in the text.

PRL 111, 073002 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

16 AUGUST 2013

073002-3



At a pulse duration larger than the core hole lifetime, a
less likely process is PPAA, where a second photoelectron
is ejected before the first hole is filled thereby creating a
transient hollow atom which is filled in a subsequent AA
process. Its lower probability is reflected in a smaller
height of the PP feature in Fig. 3. The ratio of the inte-
grated intensity of this feature to that of the PAP feature is
measured as 0.28. The shorter the FEL pulse, however, the
more probable is the PP process. To observe this effect we
have analyzed the covariance map according to the x-ray
pulse duration, as estimated from the charge-to-current
ratio recorded for each electron bunch (this duration is
probably an overestimate because the x-ray pulses have
substructures [1]). In Fig. 4(a) we plotted the integrated
volumes of two areas in the covariance map [region (g) of
Fig. 1] which correspond to a one-photon PA process and a
two-photon PPA process, respectively. In both cases the
first photoelectron and the associated Auger electron were
detected. As can be seen, the probability of hollow atom
formation decreases with increasing pulse duration, while
the PA process, whose probability depends only on atomic
properties, is little affected by the pulse duration (the small
observed variation of the PA process with the pulse dura-
tion is probably due to a residual correlation between the
pulse duration and energy).

After the PAPA process another core ionization is still
energetically possible, which we observe in Fig. 3 as the
PAPALP and PAPALP islands of the same PAPAP
sequence but with different photoelectrons detected. An
Auger process involving the L shell is a minor channel in
Neþ with a K hole (KVV:KLV:KLL ¼ 60:25:5 [20]), but
as the number of ionization steps increases, there is an
increasing probability that one of the steps leaves a hole in
the L shell; indeed, this seems to be the case here, which is
labeled by the subscript L. However, the L shell vacancy
can also be produced in a shakeup process at the middle P.
From the significant difference in heights of the PAPALP
and PAPALP islands we infer that the former has some
contribution from the 2p ! 3p shakeup satellite of the
PAP process.

The identification and direct comparison of such sequen-
ces is a unique asset of our method, while in conventional
photoelectron spectra the PAP processes give rise to broad
fluctuations over a diffuse background [22].
The ridge labeled as DKV in Fig. 3 shows correlation

between two photoelectrons simultaneously ejected from
the core and valence shells upon absorption of a single
photon [23]. The available energy is arbitrarily shared
between the two electrons giving a line Ex þ Ey ¼ const,

with an increasing height towards the ends of the line due
to a tendency towards unequal energy sharing. This higher
probability at the ends of the line is also reflected in the
nonlinearly continued DAP ionization sequence, which is
revealed in this part of the map as a diffuse DKVAP island.
This is an example of a hitherto unobserved ionization
sequence which can be separated by the present technique
from the competing PAPVP sequence, both of which give
rise to the same kinetic energy of the final electron.
In addition, several new photoionization processes are

revealed in the high energy part of the map in Fig. 3.
Notably, covariance mapping unambiguously identifies
nonlinear sequences leading to the same final state, for
example, the PVP island is separate from its chronologi-
cally reversed counterpart PPV, and PAPVP is separate
from PAPPV.
The ionization probability is related to the number of

photons in a pulse. Specifically, the probability of a process

TABLE I. Coordinates of correlation islands revealed in
Figs. 1 and 3. Bold type indicates the correlated electron pair.
Our measurements are compared with theoretical [19] and other
experimental [17,20] data.

Kinetic energy of electron pairs (eV)

Process This work Other work

PAP (192� 7, 136� 6) (192 [17], 132 [19])

PP (191� 7, 60� 4) (192 [17], 69 [19])

PAPVP (193� 7, 95� 7) (192 [17], 103 [19])

PAPALP (138� 6, 60� 6) (132 [19], 66 [19])

DKV Sum ¼ 143� 5 Sum ¼ 142 [20]

PVP (1049� 15, 169� 5) (1040 [17], 167 [19])

PAPVP (1024� 15, 103� 4) (1000 [19], 103 [19])

DKVAP (138� 5, 101� 6) (142 [20], 103 [19])

FIG. 4 (color online). Dynamic effects reflected in relative
yields of ionization sequences. The yields are integrated volumes
of covariance features, such as shown in Figs. 1 and 3. Increasing
pulse duration (a) hardly affects the dominant photoelectron-
Auger (PA) sequence, but reduces the probability of hollow atom
formation (PPA) because it has to compete with the former
process. For increasing x-ray pulse energy (b) the yields follow
a power law whose exponent is the number of photons absorbed
in the process. The values of pulse duration and energy are
accurate within �50%. All errors are �1 standard deviation.
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involving n photons depends on the nth power of the pulse
energy. Fig. 4(b) shows examples of such variation
(a saturation effect reduces the slope of the PA process
somewhat below the theoretical value). Plotting such var-
iations helps considerably to interpret covariance maps.

In conclusion, we have investigated the dynamics of
hollow atom formation by resolving on a partial-
covariance map different photoionization sequences
(such as PAPA and PPAA) leading to the same ion charge
state (Ne4þ). The nature of this technique allowed us to
completely quantify the competition between these pro-
cesses on the femtosecond time scale. On the covariance
map we discern several new sequences which give the
same kinetic energy of the final electrons and so could
not be distinguished previously. We expect that this method
of revealing ionization dynamics in intense x-ray pulses
will help to interpret diffraction patterns and improve the
accuracy of structural analysis of complex systems.

The scientific advances we have made validate partial
covariance mapping as a practical method of FEL data
analysis. It makes it possible to collect much more data
within the typical acquisition time available at an FEL,
and by its selectivity can cope with the presence of some
background impurities. There are good prospects for
discerning other multiple core vacancy processes such as
two-site double core hole formation [22,24,25] or PAP
sequences involving different atomic sites in molecules
and using this information for chemical analysis with
unprecedented ease.
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Note added.—In a separate work (which was prepared
and submitted for publication after this work was fin-
ished) some of us demonstrate the method of partial
covariance analysis to disentangle fragment ion momenta
spectra for getting insights into the Coulomb explosion of
diatomic molecules exposed to intense XUV radiation
fields [26].
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