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We implement the conformal bootstrap for N ¼ 4 superconformal field theories in four dimensions.

The consistency of the four-point function of the stress-energy tensor multiplet imposes significant upper

bounds for the scaling dimensions of unprotected local operators as functions of the central charge of the

theory. At the threshold of exclusion, a particular operator spectrum appears to be singled out by the

bootstrap constraints. We conjecture that this extremal spectrum is that of N ¼ 4 supersymmetric

Yang-Mills theory at an S-duality invariant value of the complexified gauge coupling.
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Introduction.—It has become apparent in recent years
that the conformal bootstrap program—the analysis of
conformally invariant quantum field theories using only
consistency conditions from symmetries, unitarity, and
associativity of the operator product expansion (OPE)—
can be implemented to great effect in any spacetime
dimension to place substantial constraints on the spec-
trum of local operators [1]. The constraints arising from a
single four-point function are surprisingly powerful, lead-
ing to numerical bounds on scaling dimensions that
appear to be saturated in known conformal field theories
such as the two-dimensional minimal models [2] and the
three-dimensional critical Ising model [3]. For a theory
that lies at an exclusion threshold, it is in principle
possible to recover the dimensions and three-point func-
tions of the operators appearing in the OPE decomposi-
tion of the four-point function [4,5]. One expects these
methods to be most effective in theories that are uniquely
specified by a few basic properties, such as global sym-
metries. Maximally supersymmetric conformal field theo-
ries (SCFTs) are thus ideal candidates for such an
analysis.

In this Letter, we report initial results from the applica-
tion of bootstrap methods to four-dimensional theories
with N ¼ 4 superconformal invariance [6]. While
N ¼ 4 supersymmetric Yang-Mills theory (SYM) has
been the subject of intense study, all findings to date
have either relied on perturbation theory or the planar limit,
or they have used special simplifications that pertain only
to Bogomolny-Prasad-Sommerfeld (BPS) observables. We
describe here the first nonperturbative results for the
dimensions of unprotected operators at finite values of
the central charge. We eschew any reference to a
Lagrangian description of the theory and consider the
universal four-point function of energy-momentum tensor
multiplets, whose structure is strongly constrained by sym-
metry. We obtain upper bounds on the dimensions of
unprotected operators of leading twist appearing in its
OPE decomposition and find strong indications that

N ¼ 4 SYM theory does indeed saturate the bounds at
a special point of its conformal manifold.
The sum rule.—In a four-dimensional N ¼ 4 SCFT,

the energy-momentum tensor lies in a half-BPS multiplet
whose superconformal primary, denoted here as OI

200 , I ¼
1; . . . ; 20, is a scalar operator of dimension two that trans-
forms in the 200 representation of the SUð4ÞR R-symmetry
group. Conformal symmetry fixes the form of its four-point
function to

hOI1
200ðx1ÞOI2

200ðx2ÞOI3
200ðx3ÞOI4

200ðx4Þi ¼
AI1I2I3I4ðu; vÞ

x412x
4
34

;

where we have introduced standard conformal cross
ratios u ¼ ðx212x234Þ=ðx213x224Þ and v ¼ ðx214x223Þ=ðx213x224Þ.
We will also make use of an alternate parametrization
u ¼ z�z, v ¼ ð1� zÞð1� �zÞ [8,9].
The constraints of superconformal invariance on this

four-point function have been analyzed in detail in,
e.g., Refs. [10–13]. We briefly review the results of
Refs. [10,12] and proceed to derive the corresponding
crossing symmetry sum rule. The function AI1I2I3I4ðu; vÞ
can be decomposed into channels corresponding to each
representation of SUð4ÞR appearing in the tensor product
200 � 200, yielding six functions ARðu; vÞ for R ¼ 1, 15,
200, 84, 105, 175. Superconformal symmetry leads to
relations among them, ultimately allowing the entire
four-point function to be expressed algebraically in terms
of a more elementary set of constituent functions. There is
a single unprotected function Gðu; vÞ that depends on the
full spectrum of operators appearing in the OPE, along
with two meromorphic functions and a constant that are
protected and depend only on operators in the OPE that
belong to shortened representations.
Crossing symmetry amounts to the invariance of the

four-point function under the exchange ðx1; I1Þ $ ðx3; I3Þ,
which implies several distinct relations among the
ARðu; vÞ. These relations can be processed in two steps.
First, one extracts a closed set of equations for the pro-
tected functions only. Remarkably, those equations admit a
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unique family of solutions parametrized by the central
charge appearing in the OPE of two stress tensors. In other
words, the protected part of the amplitude is uniquely fixed
by symmetry [14]. Second, substituting the solution for the
protected functions, there remains a single relation for
Gðu; vÞ that is necessary and sufficient for the crossing
symmetry of the full four-point function

v2Gðu; vÞ � u2Gðv; uÞ þ 4ðu2 � v2Þ þ 4ðu� vÞ
a

¼ 0:

Here, a is the central charge, which for N ¼ 4 SYM
theory with the gauge group G is given by dimG=4.

To proceed, we consider the OPE decomposition of the
crossing symmetry relation. This decomposition is rela-
tively simple due to the relation u2Gðu; vÞ ¼ A105ðu; vÞ
[16], which allows Gðu; vÞ to be expanded in conformal
blocks for quasiprimary operatorsO105 with nonzero three-
point coupling hO105O200O200i. Superconformal symmetry
restricts the possible multiplets in which such an operator
can appear [11,12]: there are a few infinite families of
multiplets obeying certain (semi-)shortening conditions,
as well as long multiplets for which the superconformal
primary is an SUð4ÞR singlet. The function Gðu; vÞ can be
decomposed accordingly,

G ðu; vÞ ¼ Gshortðu; vÞ þ Glongðu; vÞ;
and the two terms can be independently expanded:

G short ¼ X

‘

ðg4;‘Gð‘Þ
‘þ4ðu; vÞ þ g6;‘uG

ð‘Þ
‘þ6ðu; vÞÞ;

G long ¼ X

‘¼0;2;...

X

��2þ‘

ða�;‘uð��‘Þ=2Gð‘Þ
�þ4ðu; vÞÞ:

The expansion is in terms of conformal blocks of
SOð4; 2Þ [9],

Gð‘Þ
� ¼ 1

z� �z

��
� 1

2
z

�
‘
zf�þ‘ðzÞf��‘�2ð�zÞ � ðz $ �zÞ

�
;

with f�ðzÞ ¼ 2F1ð�=2; �=2;�; zÞ. The coefficients of the

expansion are the squares of three-point coefficients and
so are required to be non-negative by unitarity. The func-
tion Glong receives contributions only from long multiplets
of dimension � and even spin ‘, with � � ‘þ 2 for
unitarity [17].

The coefficients in the expansion ofGshort are essentially
determined by the protected parts of the amplitude. There
is a potential ambiguity due to the possibility that operators
in short representations may combine into a long represen-
tation at the unitarity bound. However, there is always a
canonical choice for the representations contributing to
Gshort such that unitarity amounts to non-negativity of the
undetermined coefficients in Glong. This choice is the same
for all a > 3=4, but jumps at a ¼ 3=4; for a < 3=4, one
must include a representation that contains higher spin
conserved currents. This transition has a physical

interpretation in N ¼ 4 SYM theory, where for G ¼
SUð2Þ, a certain quarter-BPS operator is absent due to
trace relations.
The crossing symmetry relation can now be recast as a

sum rule for the unknown, non-negative coefficients a�;‘,

X

�;‘

a�;‘F�;‘ðu; vÞ ¼ Fshortðu; v;aÞ;

where we have defined F�;‘ðu; vÞ ¼ v2Gð‘Þ
� ðu; vÞ �

u2Gð‘Þ
� ðv; uÞ, and Fshortðu; v;aÞ is a known family of

functions parametrized by the central charge a.
Numerical constraints.—Following Ref. [1], we now use

the sum rule to place constraints on the spectrum of any
N ¼ 4 SCFT. A trial spectrum can be ruled out if it is
possible to find a real linear functional � such that

� � F�;‘ðu; vÞ � 0 when a�;‘ � 0

� � Fshortðu; vÞ< 0

Entire families of trial spectra can be ruled out in this way
by enforcing the same positivity conditions for continuous
ranges of �. We consider spectral Ansätze that are parame-
trized by a lower bound �‘ on the dimension of operators
of spin ‘. (We focus here on ‘ ¼ 0, 2, 4, but the strategy
is easily generalized.) For a given choice of the �‘, all
such spectra will be ruled out if there exists a functional
satisfying

� � F�;‘ðu; vÞ � 0 for � � �‘:

The goal is to map out the contour in �‘ space that
separates the spectra that can be ruled out with such a
linear functional from those that cannot.
This problem is rendered tractable by choosing a finite-

dimensional subspace of the infinite-dimensional space of
linear functionals consisting of operators of the form

� � gðz; �zÞ :¼ X

m;n��

�m;n � @mz @
n
�zgðz; �zÞjz¼�z¼1=2

for an integer cutoff � on the maximum number of
derivatives. Furthermore, the space of conformal
blocks—normally a continuous family of functions labeled
by � for each spin—is discretized and truncated at a high
but finite spin (‘ � 20 in the plots shown here) [18]. The
task of finding a functional in this subspace that is positive
for all of these conformal blocks then reduces to a linear
programming problem and can be performed by a com-
puter. We have used the IBM ILOG CPLEX optimizer inter-
faced with MATHEMATICA.
The results are displayed in Figs. 1–3. The constraint

surfaces for the triple f�0;�2;�4g are displayed in Fig. 1
for several values of the central charge and with � ¼ 17.
The results for all other values of the central charge that we
have checked are qualitatively similar [19]. The area out-
side a cube-shaped region is excluded.
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Better resolution is obtained for a lower-dimensional
search space, and Fig. 2 shows the bounds obtained by
constraining the �0, �2, and �4 separately. The approxi-
mately cubic shape of the exclusion plots in Fig. 1 shows
that the result for the bound of a given spin does not depend
much on the choices of gaps �‘ for the other spins.

Finally, Fig. 3 shows our best estimates for the values of
the �‘ at the corner of the cubic exclusions for large values
of the central charge. We have superimposed the values of
these dimensions to orderOða�1Þ for type IIB supergravity
on AdS5 � S5.

Discussion.—Even without additional interpretation, the
results reported here provide true, nonperturbative bounds
for the dimensions of unprotected operators in N ¼ 4
SYM theory for every gauge group. From the first graph
of Fig. 2, we can read off the bound for the dimension of
the leading twist SUð4ÞR singlet scalar operator. Recall that
in perturbativeN ¼ 4 SYM theory with G ¼ SUðNÞ, this
operator is identified with the Konishi operator TrXiXi,
with dimension � ¼ 2þ �ðgYMÞ (see, e.g., Ref. [20]). By
contrast, in the planar limit at large ’t Hooft coupling, the
Konishi operator acquires a large anomalous dimension
[21] and the leading twist operator is the double-trace
operator OI

200O
I
200 , with dimension � � 4� 16=N2 [22].

Our results provide a nonperturbative upper bound for

any N. For example, the point corresponding to a ¼ 3=4
is marked in the plots of Fig. 2 and gives bounds for SUð2Þ
SYM: � � 3:050 for all values of the complexified gauge
coupling. Similar results can be read off for any gauge
groups and for spins zero, two, and four. These bounds can
be made slightly stronger for a given spin in exchange for
the assumption of a gap for the other spins.
There are, however, two features of our results that are

suggestive of a more specific interpretation. The first is the
behavior of the bounds for large values of the central
charge (see Figs. 3 and 4). For infinite central charge, the
independent bounds for leading twist operators are

ð�0;�2;�4Þ & ð4:073; 6:011; 8:005Þ:
These are very close to �‘ ¼ ‘þ 4—the result that fol-
lows from large N factorization for N ¼ 4 SYM theory,
where the leading twist unprotected primaries are double-
trace operators of the schematic form OI

200@
‘OI

200 . More

significantly, the leading 1=a corrections to the bounds are
compatible with the large ’t Hooft coupling limit of planar
SYM theory (as computed holographically in supergravity
[12,22]). Additionally, the bounds at a ¼ 1=4 appear to
converge to the correct values for Uð1Þ SYM theory [23].
A priori, the true spectrum of N ¼ 4 SYM theory could
have been impossible to access by bootstrap methods, but
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FIG. 2 (color online). Bounds for the scaling dimension of the leading twist unprotected operator of spin ‘ ¼ 0, 2, 4. The bounds are
displayed as a function of the (square root of the) central charge a. The best bound is shown in blue, corresponding to � ¼ 17, while
the lighter lines represent bounds for lower values of �.

FIG. 1 (color online). Exclusion plots in the space of leading twist gaps �0, �2, and �4. Central charges a ¼ 3=4, a ¼ 15=4, and
a ¼ 1 are shown, corresponding toN ¼ 4 SYM theory with gauge groups SUð2Þ, SUð4Þ, and SUð1Þ, respectively. The area outside
a cube-shaped region is excluded.
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we find instead evidence that our bounds are saturated by
the physical theory both at large and small values of the
central charge. We conjecture that this persists at all inter-
mediate values.

The second hint comes from the most conspicuous
feature of the plots in Fig. 1; the boundary of the excluded
region is approximately that of a cube. This is actually to
be expected if the bounds owe their existence to an isolated
solution to crossing symmetry with a spectrum of leading
twist operators corresponding to the vertex of the cube
[24]. In the case at hand, this requires further explanation,
since four-point functions in N ¼ 4 SYM theory are not
isolated but rather vary continuously with the complexified
gauge coupling. In order for a continuous family of four-
point functions to generate a cube-shaped exclusion plot, it
must be the case that for a single member of the family, the
dimensions of the leading twist operators of all spins
appearing in the OPE are maximized simultaneously.

As it happens, the conformal manifold of N ¼ 4 SYM
theory has two special points that serve as stationary points
for the dimensions of all operators in the theory. These
are the S and ST invariant theories at � ¼ �=2�þ
4�i=g2YM ¼ expð�i=2Þ and � ¼ expð�i=3Þ. This property
follows from invariance under a finite subgroup of

SLð2;ZÞ. Since there is no clear reason for coincident
extremization of anomalous dimensions at any other value
of the coupling, the shape of the exclusion thresholds,
along with the fact that the result matches known physics
for extreme values of the central charge, are strong indica-
tions that the corners of the cube-shaped boundaries in
Fig. 1 can be used to approximate the spectrum at one of
the self-dual points.
This is an extraordinary possibility, since there are no

known tools for analyzing the self-dual points of N ¼ 4
SYM theory—they are in fact the least accessible points to
any existing methods. We are hopeful that by using addi-
tional data as input parameters, e.g., the dimension and
OPE coefficient of an unprotected operator, it will be
possible in future work to examine the entire conformal
manifold of the theory.
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