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Fisher matrix and related studies have suggested that, with second-generation gravitational-wave detectors,

it may be possible to infer the equation of state of neutron stars using tidal effects in a binary inspiral. Here, we

present the first fully Bayesian investigation of this problem. We simulate a realistic data analysis setting by

performing a series of numerical experiments of binary neutron-star signals hidden in detector noise, assuming

the projected final design sensitivity of the Advanced LIGO-Virgo network.With an astrophysical distribution

of events (in particular, uniform in comoving volume), we find that only a few tens of detections will be

required to arrive at strong constraints, even for some of the softest equations of state in the literature. Thus,

direct gravitational-wave detection will provide a unique probe of neutron-star structure.
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Introduction.—The Advanced LIGO [1] and Virgo [2]
gravitational-wave (GW) detectors are expected to start tak-
ing data in 2015,with gradual upgrades in the followingyears.
KAGRA [3] in Japan and possibly LIGO-India [4] will come
online few years later. Second-generation instruments may
detect tens of GW signals from compact binary coalescences:
the rates are expected to be in the range�1–100 yr�1 condi-
tional on the astrophysical event rate, the instruments’ duty
cycles, and the sensitivity evolution of the detectors [5].

Currently, predictions for the neutron-star equation of
state (EOS) vary by an order of magnitude in terms of tidal
deformability [6]. The detection of gravitational-wave sig-
nals fromcoalescing binary neutron stars (BNS), or a neutron
star-black hole coalescence, could provide the missing in-
formation. During the last stages of inspiral, the Newtonian
tidal field Eij of one component will induce a quadrupole

moment Qij in the other, where to leading order in the

adiabatic approximation Qij ¼ ��ðEOS;mÞEij. The tidal

deformability parameter�ðEOS;mÞ depends on the neutron-
star mass m in a way that is determined by its EOS. The
neutron stars’ deformation has an influence on the orbital
motion, in particular, the phase, which up to a factor of 2 is
also the phase�ðtÞ of the emitted gravitational-wave signal.
In the post-Newtonian approximation, one has �ðtÞ ¼
�PPðtÞ þ�tidalðtÞ, where�PP is the phase for point particles,
and the tidal contribution�tidal takes the form [6,7]

�tidalðvÞ ¼
X2
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where the sum is over the components of the binary,

v ¼ ðM!Þ1=3 is a characteristic velocity in terms of the
gravitational-wave frequency !, �a ¼ ma=M, and �a ¼
�ðmaÞ, where ma are the component masses, M is the total
mass, and � ¼ m1m2=M

2. The function �ðmÞ takes
the form �ðmÞ ¼ ð2=3Þk2R5ðmÞ, with k2 the second Love
number and RðmÞ a neutron star’s radius as a function of
mass. Note that �ðmÞ enters Eq. (1) only in the combination
�ðmÞ=M5 / ðR=MÞ5 � 102–105 [8]. Hence, although tidal
effects only enter at very high post-Newtonian order
(5PN and 6PN, in the usual notation), they come with a
large prefactor, so that they might be observable even with
second-generation detectors.
Read et al. [9] estimated that a single detection of a close-

by BNS source (100 Mpc) could constrain the neutron-star
radius to 10%. Hinderer et al. [6] performed a Fisher matrix
calculation with post-Newtonian waveforms truncated at
450 Hz to see how well � might be measurable for a
close-by BNS from the low-frequency inspiral part alone.
Their results suggest that even for a very hard EOS, corre-
sponding to the largest tidal deformability, it would be
difficult to extract information about the EOS from this
frequency regime with the upcoming second-generation
detectors. Damour, Nagar, and Villain [10] assumed an
approximation to effective one-body waveforms, which
they used to the point where the neutron stars are touching.
Their Fisher matrix analysis indicated more encouraging
prospects, suggesting that it might be possible after all to
gain information about the EOS. Lackey et al. [11] per-
formed similar analyses for a neutron star-black hole co-
alescence but using hybrid numerical relativity waveforms
matched to effective one-body approximants, also arriving
at cautiously optimistic conclusions. The abovementioned
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studies were for single detected sources; a first investigation
for multiple sources was reported in Ref. [12], where it was
estimated that a similar accuracy as in Ref. [9] could be
achieved with three low signal-to-noise ratio (SNR) detec-
tions. On the other hand, Fisher matrix based analyses are
known to be unreliable at low SNR [13–15], and from a
realistic data analysis perspective, these studies still leave
unclear whether it will be possible to make strong state-
ments about the EOS even with multiple sources.

We present the first Bayesian investigation of the prob-
lem in a realistic data analysis setting. In particular, we
consider BNS signals in simulated detector noise, assum-
ing the projected final design sensitivity of the Advanced
LIGO-Virgo network. Sources are distributed in an astro-
physically realistic way. We evaluate two different
Bayesian methods which allow us to combine information
from multiple sources. We find that a few tens of sources
will be required to arrive at strong constraints, even for
some of the softest equations of state in the literature. Thus,
direct gravitational-wave detection will provide a unique
probe of neutron-star structure.

Assumptions.—At the time this work was started, the
waveform model of Ref. [10], which was inspired on the
effective one-body formalism and has tidal terms to higher
PN order, was not yet available. We consider the post-
Newtonian frequency domain approximant of Ref. [6] with
tidal contributions at 5PN and 6PN. We cut this off at the

‘‘last stable orbit’’ (LSO) frequency fLSO ¼ 1=ð63=2�MÞ.
Since spins are expected to be small in binary neutron-star
systems [16], we neglect them. Our waveform model also
suffers from the absence in the phase of unknown point
particle contributions beyond 3.5PN. These will be set by
the neutron-star masses (and spins, but their effects will be
minor), knowledge of which is obtained primarily from the
low-frequency regime (to a fraction of a percent for ‘‘chirp

mass’’ M ¼ M�3=5 and about a percent for �), whereas
tidal effects are measured from the high-frequency part of
the waveform [10]. For this reason, when the coefficients
of the unknown 4PN–6PN contributions become available,
we do not expect them to act as a nuisance in inferring the
EOS. Overall, it seems reasonable to assume that results
obtained with our waveform model will be indicative of
what can be achieved with second-generation detectors.

Redshift effects are included in �PPðvÞ, assuming a
�CDM cosmology with H0 ¼ 70 km s�1 Mpc�1. Instead
of using the Fisher matrix formalism, we perform full
Bayesian analyses on signals that are coherently added to
simulated stationary, Gaussian noise following the pre-
dicted Advanced LIGO and Virgo final design sensitivities.
The BNS sources have component masses that are drawn
uniformly from the interval ½1; 2�M�. Their sky positions,
inclinations, and polarizations are uniform on the sphere.
Sources are distributed uniformly in comoving volume,
with luminosity distances between 100 and 250 Mpc, so
that the majority of events will be near the threshold of

detectability, chosen at a network SNR of 8 [17]; this
means that 70% will be at a distance greater than
175 Mpc, and only 5% will be closer than 120 Mpc.
Method 1: Taylor expansion of �ðmÞ.—Oneway to obtain

information about the EOS is by expanding the tidal deform-
ability in ðm�m0Þ=M�, with m0 some reference mass

�ðmÞ ¼ X
j

1

j!
�j

�
m�m0

M�

�
j
: (2)

For a given EOS, the coefficients �j are fixed. This provides

us with a way to combine information about the EOS from
multiple sources. Let d1; d2; . . . ; dN be N stretches of
three-detector data, each containing a detected BNS signal,
and denote whatever additional information we hold by I.
Assuming that all systems have the same EOS, the posterior
density functions pð�jjdn; IÞ from each of the detections dn
together yield a combined posterior density

pð�jjd1; d2; . . . ; dN; IÞ ¼ pð�jjIÞ1�N
YN
n¼1

pð�jjdn; IÞ; (3)

where we have assumed independence of the dn and
used Bayes’ theorem; pð�jjIÞ is the prior density for the

parameter �j.

Only a limited number of coefficients in Eq. (2) will be
measurable. Moreover, if too many coefficients are esti-
mated at once, the measurement accuracy on all of them
will deteriorate. In practice, already �2 cannot be measured.
Therefore, in the recovery waveforms, we adopt a linear
approximation of �ðmÞ around the ‘‘canonical’’ reference
mass m0 ¼ 1:4M� [10]:

�ðmÞ ’ �0 þ �1ðm� 1:4M�Þ=M�: (4)

Now, for each detection dn, we need to compute the poste-
rior probability densities pð�0jdn; IÞ and pð�1jdn; IÞ. These
are obtained by marginalizing over all the other parameters
in the problem; for instance,

pð�0jdn; IÞ ¼
Z

d ~�d�1pð ~�; �0; �1jdn; IÞ; (5)

where ~� represents masses, sky position, orientation of the
orbital plane, and distance. The joint posterior density
function for all the parameters takes the form

pð ~�; �0; �1jdn; IÞ ¼ pðdnj ~�; �0; �1; IÞpð ~�; �0; �1jIÞ
pðdnjIÞ : (6)

Here, pð ~�; �0; �1jIÞ ¼ pð ~�jIÞpð�0jIÞpð�1jIÞ. The prior

density pð ~�jIÞ is taken to be the same as in Ref. [18]. We
express �ðmÞ in units of s5. For pð�0jIÞ, we choose a flat
distribution in the range ½0; 5� � 10�23 s5, and for pð�1jIÞ a
flat distribution on ½�5; 0� � 10�18 s4M�; these choices
cover all the EOS considered in Ref. [6]. The prior proba-
bility for the data pðdnjIÞ is obtained by demanding that
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the left hand side of Eq. (6) be normalized. Finally, the
likelihood is given by [19]

pðdnj ~�; �0; �1; IÞ

¼ N exp

�
�2

Z fLSO

f0

df
j~dnðfÞ � ~hlinð ~�; �0; �1; fÞj2

SnðfÞ
�
;

(7)

where N is a normalization factor, ~dn is the Fourier
transform of the data stream for the nth detection, and SnðfÞ
is the one-sided noise power spectral density; f0 is a
lower cutoff frequency, which we take to be 20 Hz.
~hlinð ~�; �0; �1; fÞ is our frequency domain waveform, with
the linearized expression for �ðmÞ, Eq. (4), substituted into
the tidal contribution to the phase, Eq. (1). To explore the
likelihood function, we used the method of nested sampling
as implemented by Veitch and Vecchio [19].

In Fig. 1, we show the evolution with an increasing
number of sources of the medians and 95% confidence
intervals in the measurement of �0, for three different EOS
models from Hinderer et al. [6]: a hard EOS (MS1), a
moderate one (H4), and a soft one (SQM3). In each case,
after a few tens of sources, the value of �0 is recovered with
a statistical uncertainty�10%, and it is easily distinguish-
able from the ones for the other EOS. (On the other hand,
�1 remains uncertain.) We see that the posterior medians
for �0 are ordered correctly, which suggests a second
method to identify the EOS, namely, hypothesis ranking.

Method 2: Hypothesis ranking.—Hinderer et al. com-
puted the function �ðmÞ for a large number of (families of)
equations of state, some of them mainly involving
neutrons, protons, electrons, and muons, others allowing
for pions and hyperons, and a few assuming strange quark
matter. Given a (arbitrarily large) discrete set fH kg

of models, each corresponding to a different EOS, or
equivalently a different deformability �ðmÞ, the relative
odds ratios for any pair of models H i, H j can be

computed as

Oi
j ¼

PðH ijd1; d2; . . . ; dN; IÞ
PðH jjd1; d2; . . . ; dN; IÞ

: (8)

Again, assuming independence of the detector outputs
d1; d2; . . . ; dN and using Bayes’ theorem, one can write

Oi
j ¼

PðH ijIÞ
PðH jjIÞ

YN
n¼1

PðdnjH i; IÞ
PðdnjH j; IÞ

: (9)

PðH ijIÞ is the probability of the model H i before any
measurement has taken place, and similarly forH j; in the

absence of more information, these can be set equal to each
other for all models H k. The evidences for the various
models are given by

pðdnjH k; IÞ ¼
Z

d ~�pðdnjH k; ~�; IÞpð ~�jH k; IÞ; (10)

with ~� the parameters of the template waveforms (masses,

sky position, etc.) and pð ~�jH k; IÞ the prior probabilities
for these parameters, which we choose to be the same as in

Ref. [18]. The likelihood function pðdnjH k; ~�; IÞ takes
the form

pðdnjH k; ~�; IÞ ¼ N exp

�
�2

Z fLSO

f0

df
j~dn � ~hkð ~�; fÞj2

SnðfÞ
�
:

(11)

This time, ~hkð ~�; fÞ is the waveform model corresponding
to the EOS H k, meaning the abovementioned frequency
domain approximant with tidal contributions to the phase
as in Eq. (1), with a deformability �ðmÞ corresponding to
that EOS. Here, too, we use nested sampling to probe the
likelihood [19].
The set fH kg could comprise all the models consid-

ered in, e.g., Ref. [6], and many more. In this Letter,
we wish to show that it will at least be possible to
distinguish between a hard, a moderate, and a soft
EOS. Accordingly, we focus on just three EOS models,
the ones labeled MS1, H4, and SQM3 in Ref. [6]. In
addition, we consider the point particle model (PP) in
which �ðmÞ � 0. Figure 2 shows the cumulative distri-
bution of lnOk

j for different signal models H k against

the true EOS model H j, for Oð30Þ simulated catalogs of

20 sources each. A useful criterion for correct identifi-
cation of the underlying EOS is that the log odds ratio of
the incorrect models against the true EOS be decisive
according to the Jeffreys scale, i.e., <� 5 in log odds
(odds less than 1:150, which one can think of as being
roughly similar to 3�) [20]. When the signals’ EOS is
MS1 (top right panel of Fig. 2), we see that the runner-
up model H4 is decisively disfavored ( lnOH4

MS1 <�5) for

FIG. 1 (color online). Median and 95% confidence interval
evolution for the �0 parameter as an increasing number of
sources is taken into consideration, for three different equations
of state in the signals: a hard (MS1), a moderate (H4), and a
soft (SQM3) EOS. In each case, the dashed line indicates the
true value.
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over 77% of simulated catalogs of sources. When the
true EOS is H4 (bottom left panel of the Fig. 2), the
runner up is SQM3, which is decisively disfavored

(lnOSQM3
H4 <�5) for 62% of catalogs. Finally, when the

underlying EOS is SQM3 (bottom right panel), correct
identification of the EOS happens for about 57% of
catalogs. (To give an indication of what happens with
a smaller number of detections, for 10 sources per
catalog, these fractions would have been 68%, 46%,
and 49%, respectively.) We stress that Fig. 2 pertains
to only 20 detected sources; the results will improve as
more detections are made.

Figure 2 also shows another interesting feature of the
approach presented in this section: the odds ratio ranks the
various competing hypotheses according to their ‘‘good-
ness of fit.’’ For example, the top left panel shows the odds
ratio for catalogs of 20 sources for PP signals. All finite
size models are correctly disfavored compared to the PP
hypothesis, and the degree of belief in the three competing
models reflects the size of the physical effects they predict:

the harder the EOS, the less we should be inclined to
believe that it faithfully describes our observations. This
feature suggests that in a real GW detection scenario, even
if none of the EOS models considered will be the one
chosen by nature, we will still be able to rank the models
according to the predictions they offer and thus guide the
development of theoretical models for the interiors of
neutron stars.
Conclusions and future work.—We have shown that in a

realistic data analysis setting, (a) quantitative information
about the size of the tidal deformability at a given reference
mass can be obtained with a 2� statistical uncertainty of
�10% after a few tens of detections and (b) hypothesis
ranking will be able to distinguish between hard, moderate,
and soft EOS with Oð20Þ events.
Our results open the door for further studies. For

example, can we arrive at more direct physical informa-
tion about pressure as a function of density? Already,
in 1992, Lindblom noted that measurements along the
neutron-star mass-radius curve can be converted to

FIG. 2 (color online). Cumulative distributions of log odds ratios for Oð30Þ simulated catalogs of sources, for various EOS against
the true EOS model, with different panels corresponding to different true EOS in the signal model (stated at the top of each panel).
For each signal model, the number of sources per catalog was fixed to 20. Using the Jeffreys criterion, we consider the true EOSH j to

be identified correctly if lnOi
j <�5 (odds less than 1:150) for all the other EOSH i. In the cases where the true EOS are MS1, H4, and

SQM3, this happens for 77%, 62%, and 57% of catalogs, respectively. Note how hypotheses tend to get ranked correctly by ‘‘goodness
of fit’’, i.e., hardness of the EOS.
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points along the pressure versus density curve [21].
Other possibilities include probing pressure against den-
sity, represented as piecewise polytropes [9] or using
spectral fits [22]. Also, in the preliminary study pre-
sented here, inspiral waveforms were terminated at the
LSO for the point particle limit, but depending on the
EOS, LSO could occur earlier than that [23], which in
itself is a source of information. Moreover, as shown in
Ref. [9], for hard equations of state, the formation of a
black hole could be preceded by the occurrence of a
fast-rotating, highly asymmetric hypermassive neutron
star, leading to a distinctive postmerger signal which
may be detectable with advanced gravitational-wave
observatories. In this regard, we also note the
equation-of-state dependence of the postmerger phase
found in Ref. [24]. Extracting this information will
most likely require the construction of phenomenologi-
cal waveforms which have a close match to numerical
ones; see, e.g., Ref. [25]. Finally, in the inspiral, we
neglected the effects of spins; although these are
expected to be very small for binary neutron stars and
are unlikely to significantly affect our conclusions, they
should nevertheless be quantified as well. Ultimately,
our findings motivate the construction of a full data
analysis pipeline to constrain the EOS of neutron stars
using BNS detections.
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