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We study the simultaneous estimation of multiple phases as a discretized model for the imaging of a

phase object. We identify quantum probe states that provide an enhancement compared to the best

quantum scheme for the estimation of each individual phase separately as well as improvements over

classical strategies. Our strategy provides an advantage in the variance of the estimation over individual

quantum estimation schemes that scales as OðdÞ, where d is the number of phases. Finally, we study the

attainability of this limit using realistic probes and photon-number-resolving detectors. This is a problem

in which an intrinsic advantage is derived from the estimation of multiple parameters simultaneously.
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Introduction.—Recent developments in quantum met-
rology point to a new frontier of parameter estimation in
which exploiting quantum states enables higher precision
than can be achieved using only classical resources.
Much of the work in this field to date has been directed
towards the estimation of a single Hamiltonian parameter.
This has been explored both theoretically [1–13] and
experimentally, with the estimation of optical phase shifts
by means of interferometry providing the dominant para-
digm, in the setting of photonic systems as the leading
platform [14–18].

One of the most important metrology problems to the
wider research community is that of microscopy and imag-
ing. Producing a quantum advantage in imaging would be
of significant benefit in fields such as biology, particularly
for the imaging of samples that are sensitive to the total
illumination. Various approaches to quantum imaging have
been proposed, typically exploring methods for increasing
the diffraction limited resolution of optical imaging sys-
tems [19–25]. A recent classical investigation of quantum
enhanced imaging made use of point estimation theory,
quantifying differences between images by means of a
single parameter [26]. However, imaging is inherently a
multiparameter estimation problem, and deeper insights
can be gained by studying it as such.

In this Letter, we consider a discretized model for phase
imaging based on this approach. Phase imaging is a corner-
stone of optical microscopy, typically realized using the
related techniques of phase contrast and differential inter-
ference contrast imaging [27], that allows differences in
refractive index to be detected in otherwise transparent
media. So far, the potential for quantum enhancements to
these techniques has yet to be explored. Our approach
maps phase imaging onto the problem of multiple simul-
taneous phase estimation.

Our results provide a strategy for the estimation of
multiple phases using correlated quantum states, in which
themultiparameter nature of the problem leads to an intrinsic
benefit when exploiting quantum resources. A surprising

outcome of our analysis is that our quantum strategy provides
anOðdÞ advantage,whered is the number of phases, over the
optimal quantum individual estimation scheme of using
N00N states [7]. We further show that a resource advantage
can be provided over the best classical phase estimation
schemes.
Phase imaging.—We adopt a discretized model of phase

imaging, in which we address the question of how to esti-
mate d independent phases most efficiently withN photons.
We note that earlier works have explored other aspects of
multiple parameter estimation from a quantum information
perspective. In the case of the estimation of parameters
characterizing a set of noncommuting unitary operations,
it was shown that entangled states and measurements can
attain the Heisenberg limit in the number of photons used in
each probe state [28–30]. In the commuting case, the prob-
lem of estimating d phases with an ensemble of single-
photon probe states has been considered. A Bayesian
approach showed that the cost of estimation increases with
the number of parameters involved [31], and a Fisher infor-
mation based approach showed that entangling two multi-
level systems provides no advantage over using a single
multilevel system [32]. More recently, the error associated
with estimating two phases using three and four mode
interferometers (and three and four photons, respectively)
has been investigated [33].
We now turn to the general case of determining multiple

independent phases by distributing N photons across a
probe state in an optimal manner. Our discretized phase
imaging model consists of a dþ 1-mode interferometer
with a preparation, an interaction, and a measurement stage
as in Fig. 1. The preparation stage creates an arbitrary pure
input state of the form

jc i ¼ XD

k¼1

�kjNk;0; Nk;1; ::Nk;di �
XD

k¼1

�kjNki: (1)

The distribution of photons in a given configuration k
is expressed compactly by a vector Nk, composed of
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individual components Nk;m that give the number of pho-

tons in mode m, such that
P

d
m¼0 Nk;m ¼ N. D ¼

ðN þ dÞ!=N!d! is the number of distinct configurations of
distributing N photons across dþ 1 modes. Exploiting the
global phase freedom of the problem, we choose the mode
labeled 0 as our reference mode and therefore, the modes
registering the phases are labeled f1; . . . ; dg. To each of
these configurations, we associate a complex amplitude�k.
The state is normalized by requiring that

P
D
k¼1 j�kj2 ¼ 1.

The input state acquires a phase through the unitary

transformation U� ¼ ei
P

d
m¼1

N̂m�m , where �m is the phase

accrued and N̂m the number operator for mode m.
Denoting � ¼ f�1; . . . ; �dg, the evolved state is given by

jc �i ¼ U�jc i ¼ XD

k¼1

�ke
iNk��jNki: (2)

The precision of the estimate of �, governed by its
covariance matrix Covð�Þ, is lower bounded via the the
quantum Cramér-Rao bound (QCRB) [34]

Covð�Þ � ðMI�Þ�1; (3)

where I� is the quantum Fisher information (QFI) matrix
and M is the classical contribution from repeating the
experiment [35]. This is a d� d sized matrix inequality
which is satisfied when Covð�Þ � ðMI�Þ�1 is a positive
matrix. The QFI matrix is defined as [34,36]

½I��l;m ¼ 1

2
hc �jðLlLm þ LmLlÞjc �i; (4)

where the operators Lm are called symmetric logarithmic
derivatives, defined for pure states by

L�l ¼ 2ðj@�lc �ihc �j þ jc �ih@�lc �jÞ: (5)

We show in Supplemental Material Section I [37] that the
QFI matrix associated with the estimation of the phases in
our interferometer is

I� ¼ 4
X
i

j�ij2NiN
T
i � 4

X
i;j

j�ij2j�jj2NiN
T
j : (6)

For this Letter, we consider only the ideal case of
pure states. In this case, the bound is guaranteed to be
saturated if the condition Im½hc �jLlLmjc �i� ¼ 0 is

satisfied, which is true in our case for all l, m, and �
[38]. Thus, the QCRB can be saturated for the estimation
of multiple phases simultaneously given the input states
we study in Eq. (1).
Since we are interested in purely quantum enhance-

ments, we henceforth set M ¼ 1 in Eq. (3). Then taking
the trace of both sides gives a lower bound on the total
variance of all the phases estimated

j��j2 � Xd

m¼1

��2m � Tr½Covð�Þ� � Tr½I�1
� �: (7)

The saturation of the matrix QCRB implies a saturation of
the above inequality, and in the rest of this Letter, we will
be concerned with minimizing j��j2.
Optimal probe states.—It is well-known that the best

quantum probe of N photons for estimating a single phase
is theN00N state which saturates the corresponding QCRB
and attains the Heisenberg limit of j��j2 ¼ 1=N2 [7]. The
origin of this scaling is the number variance for the two
modes, which scales as N2. Based on this intuition, we
consider a generalization in which our quantum probe is a
coherent superposition of N photons in one of the modes
and none in any of the other dmodes. Due to the symmetry
of our problem over the d modes in which we choose to
estimate the phases, we consider the quantum probe

jc i ¼ �ðj0; N; . . . ; 0; 0i þ j0; 0; . . . ; N; 0i þ � � �
þ j0; 0; . . . ; 0; NiÞ þ �jN; 0; . . . ; 0; 0i; (8)

such that d�2 þ �2 ¼ 1. For these states, the QFI matrix
can be found using Eq. (6). As the QFI only depends on the
amplitude of � and�, we assume that they are real without
loss of generality. Under this assumption, � is uniquely
determined by the normalization condition and is, there-
fore, no longer an independent variable,

½I��l;m ¼ 4N2ð�l;m�
2 � �4Þ: (9)

The minimum total variance in Eq. (7) can be found by
minimizing Tr ½I�1

� � via differentiation with respect to �,

j��sj2 ¼ ð1þ ffiffiffi
d

p Þ2d=4
N2

; (10)

for � ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dþ ffiffiffi

d
pp

. We label this state as jc si. This
bound should now be compared to the variance of estimat-
ing the d phases � using d separate interferometers inde-
pendently. Assuming for simplicity that d is a factor of N
[39], the best quantum strategy uses N00N states with a
maximum of N=d photons, with a variance of d2=N2 for
each phase. Then, the total variance for this approach is
j��indj2 ¼ d3=N2. In a classical strategy where the probe
is restricted to uncorrelated coherent states of the form

�d
i¼1j�ii, such thatPd

i¼1h�ijN̂ij�ii ¼ N, the total variance
is j��clasj2 ¼ d2=N.
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FIG. 1 (color online). Discretized phase imaging model. We
consider the simultaneous estimation of d phases using a setup
consisting of state preparation (green), independent phase appli-
cation in each mode (blue), and state measurement (purple).
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As expected, both the quantum strategies follow the
Heisenberg scaling in the total number of photons for
the total variance. However, the quantum simultaneous
strategy has an additional advantage over the others.
Comparing the three bounds, we find

j��sj2 � j��indj2 � j��clasj2; (11)

where the first inequality is strict for d > 1, and the second
for d < N. As typical instances would consist of many
more photons than the number of parameters to be esti-
mated, we are guaranteed that our strategy of simultaneous
quantum estimation is better than individual estimation.
Furthermore, the advantage, shown in Fig. 2, over the best
quantum strategy of independent estimation improves lin-
early with the number of phases, scaling as 1=4d. This is
our main result.

The advantage of simultaneous quantum phase estima-
tion is OðdÞ [40], and one might wonder if this is the
maximum possible advantage that can be obtained by
quantum probes of the form Eq. (1). We do not have an
analytic proof that this is the case, and numerical searches
are hampered by the unfavorable scaling in the number of
state configurations D, since in the limit of large N, d, this

is D	 2ðNþdÞS, where S is the binary Shannon entropy of
d=ðN þ dÞ. We have, however, performed a numerical
optimization to find the states with the minimal total
variance in the parameter ranges d ¼ 1:6, n ¼ 1:6 and
found that the optimal states always have the form in
Eq. (8).

The definition of a trial is central for a proper account-
ing of resources and therefore for identifying any quan-
tum advantages. We have defined a trial to consist of a
complete characterization of all d phases using N pho-
tons. Alternative definitions can be considered, such as
when a trial simply consists of a single illumination of the
sample with N photons, with freedom to use these pho-
tons differently in each trial. In the latter case, an alter-
native strategy of using all N photons to estimate a single
phase in a given trial, switching through the phases to be

estimated in each trial, can also produce an Oðd2Þ scaling
in the variance. Now, however,Nd photons are required in
order to provide one set of estimates for the phases, this
will lead to d fewer trials per phase, and therefore, a factor
1=d slower convergence to the Cramér-Rao bound.
Optimal measurements.—We now turn to the problem of

identifying measurements that can realize the quantum
advantages in multiphase estimation. Although we know
that the QRCB can be saturated in principle, it is important
to identify the measurements that allow us to do so in
practice. In Supplemental Material Section II [37], we
consider positive-operator-valued measurement (POVM)
sets in which one element is a projection onto the probe
state after transformation by the interferometer with phases
�s. We show that these sets saturate the QCRB at this
specific point in parameter space, and that the associated
classical Fisher information matrix is equal to the QFI
matrix.
One such construction, for the probe jc wi, is given by

� ¼ fj�lih�ljg, where j�li ¼ P
m�l;mjN0

mi and jN0
mi is

the configuration with N photons in mode m and no
photons in any other mode. The component amplitudes
are given by

�l;m ¼

8>>>><
>>>>:

ffiffiffiffiffiffiffiffiffiffiðl�1Þ!
ðlþ1Þ!

q
; m � l� 1;

�
ffiffiffiffiffiffi
l

lþ1

q
; m ¼ l;

0; m > l;

(12)

for l ¼ 1; . . . ; d and m ¼ 0; . . . ; d. The additional l ¼ 0

state is given by �0;m ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
dþ 1

p
. This set saturates the

QFI for �s ¼ 0. An explicit construction for d ¼ 3 is
shown in Table 1 in the Supplemental Material Section II
[37]. A similar set of projectors can also be obtained for the
optimal state given by Eq. (8).
As can be seen, the probability pl ¼ jhc wj�lij2 associ-

ated with each outcome is transparently related to the
phases, with p1 involving only �1, p2 only �1, �2, and so
on. This suggests that an estimator could be easily created
that would allow one to determine the probability distribu-
tion for the phases given a set of experimental outcomes.
Realistic probes and measurements.—The optimal

probe states and measurements involve quantum correlated
states that may be challenging to implement in practice.
In this section, we present examples of probe states that
may be relatively easier to prepare, and show the enhance-
ments predicted earlier are achievable using realistic
measurements.
For single parameter estimation, it was shown that the

Holland-Burnett (HB) state [1,10], generated by interfer-
ing two pure N photon states on a 50=50 beam splitter, can
also lead to a 1=N2 Heisenberg scaling in estimation. This
state is significantly easier to generate than the ideal N00N
state since it does not rely on the use of optical nonlinear
interactions or quantum gates. Further, these states are also
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FIG. 2 (color online). Strategies for multiple phase estimation
using N ¼ 16 photons. The red line gives the total variance
j��sj2 for the quantum simultaneous strategy using the states
jc si, the blue dashed line gives the variance j��indj2 achievable
using N00N states, and the cyan dashed line gives the variance
j��clasj2 for an equivalent classical state.
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known to be close to optimal with respect to losses in the
quantum sensor.

We consider a multimode generalization of these states,
generated bymeans of Fouriermultiport devices that imple-
ment a quantum Fourier transform (QFT) [18,33,41], for
two modes this is equivalent to a 50=50 beam splitter. As in
the creation of HB states, n photons are input into each
mode of the QFT device, leading to an N ¼ nðdþ 1Þ
photon state output, that we denote HBðn; dÞ. This state is
then used for phase estimation. Our results include as a
special case, recent work by Spagnolo et al. [33] which
explored the QFI associated with this device for the specific
case of d ¼ 2, 3 with n ¼ 1.

Figure 3 shows numerical calculations of the expected
variance of estimation for these states, calculated from the
QCRB [Eq. (7)]. Our calculations suggest that theHBð1; dÞ
states give the closest performance to the probe jc si
previously considered. As the number of photons input
into each mode is increased, the variance of estimation
moves away from that achievable using jc si, and
approaches the error for simultaneous phase estimation
using N00N states. The observed decrease in performance
of the HBðn; dÞ state is because the probability amplitude
associated with the terms in which the photons are highly
bunched in one mode decreases significantly with n and d
[42], and it is these terms that are most sensitive to the
phases in the interferometer. It is also this property,

however, that ensures that these states are robust against
loss in the single phase case [10], something that is not a
property of the N00N states. The degree to which multi-
phase estimation can be loss tolerant is not yet known.
Although HBðn; dÞ states do not perform as well

as comparable jc si probe states, they do at least as well
as N00N states, which are just as challenging to prepare
as jc si states. The ease of experimental generation of
multimode HB states may make them an attractive candi-
date for multiple phase estimation protocols. This is
particularly the case for n ¼ 1 states, which could be
produced using heralded single photons, and demonstrate
the best comparative performance over N00N states of the
same photon number.
In addition to the challenges of optimal state prepara-

tion, the optimal measurements involve projections onto
complex multiphoton states, and thus, they they may not be
experimentally feasible. It is therefore important to show
that an experimentally realistic measurement scheme
exists that can achieve or approach the QCRB. We calcu-
lated numerically the variance of the phase estimation
given by the classical Fisher information for HBðn; dÞ
states using a detection scheme in which the different
modes are combined using a balanced Fourier multiport
device, followed by ideal photon-number-resolving detec-
tors (PNRD). Since the probability of different combina-
tions of detector outcomes depends on the phases, a
maximum likelihood scheme could in principle be used
to estimate the phases given a set of measured detector
outcomes. As the accuracy of estimation is dependent on
the value of �, numerical optimization over the phases was
used determine the minimum possible error. Calculations
were carried out for the multimode HBð1; dÞ states [the
class of HBðn; dÞ states that exhibited the best perform-
ance], and are shown in Fig. 3(b). The calculated variance
is comparable to the QFI, and below that achievable using
N00N states.
Conclusions.—Our analysis of imaging as a multipara-

meter estimation problem presents an alternative approach
to the typical methods based on enhancing diffraction
limits, and may be of interest for other quantum enhanced
imaging problems. In addition, our results should be of
wide interest as many problems, such as strain sensing,
range finding, and gravitational wave detection can be
recast as optical phase estimation [43]. They should also
motivate an investigation into the nature of the quantum
resources at the root of the enhancement shown.
We thank J. Nunn, M.D. Vidrighin, B. Metcalf, J.

Spring, and W. S. Kolthammer for helpful discussions
and comments on the manuscript. This work was supported
by the Engineering and Physical Sciences Research
Council (EP/H03031X/1), the European Commission
project Q-ESSENCE (248095), and the Air Force Office
of Scientific Research (European Office of Aerospace
Research and Development).
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FIG. 3 (color online). (a) Realistic probes: The green line
gives numerical calculations of the total variance from the
QCRB for the simultaneous estimation of 4 phases using
HBðn; 4Þ states as a function of n. For comparison, the blue
and red dashed lines give the QCRB for equivalent N00N and
jc si states, respectively. (b) Realistic measurements: The green
dots show the total variance for the simultaneous estimation of d
phases using a HBð1; dÞ state and a measurement apparatus
consisting of a Fourier multiport followed by PNRDs. The green
line gives the QCRB variance error for the same HBð1; dÞ state,
while the blue and red dashed lines again give the QCRB for
equivalent N00N and jc si states, respectively.
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