
Nature of the Epidemic Threshold for the Susceptible-Infected-Susceptible Dynamics
in Networks
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We develop an analytical approach to the susceptible-infected-susceptible epidemic model that allows

us to unravel the true origin of the absence of an epidemic threshold in heterogeneous networks. We find

that a delicate balance between the number of high degree nodes in the network and the topological

distance between them dictates the existence or absence of such a threshold. In particular, small-world

random networks with a degree distribution decaying slower than an exponential have a vanishing

epidemic threshold in the thermodynamic limit.
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The accurate theoretical understanding of epidemic
thresholds on complex networks is a pressing challenge
in the field of network science [1–3]. Indeed, such knowl-
edge has potential practical applications in the design
of optimal immunization programs [4,5] and may shed
light on the behavior of the viral spreading of rumors,
fads, and beliefs [6,7]. In this respect, large research effort
has recently been devoted to the study of the susceptible-
infected-susceptible (SIS) epidemic model [8], the sim-
plest model of epidemic spreading showing an absorbing
state phase transition between a healthy and an endemic
phase at a critical value of the effective infective rate � [9].
The behavior of the SIS model is particularly relevant in
the case of highly heterogeneous networks, for which a
vanishing epidemic threshold in the thermodynamic limit
has been pointed out [10]. Recently, a scientific contro-
versy has arisen concerning the location and the real nature
of the epidemic threshold in this kind of network [11–14].
In this Letter, we provide strong analytical and numerical
arguments showing that the threshold asymptotically van-
ishes in any network with a degree distribution decaying
slower than exponentially, thus clarifying the physical
origin of this behavior.

In the SIS model, individuals can be in one of two states,
either susceptible or infected. Susceptible individuals
become infected by contact with infected individuals at
rate � times the number of infected contacts. Infected
individuals, on the other hand, become spontaneously
healthy again at rate � that, without loss of generality, is
set to unity. The original approach to the dynamics of the
SIS model [10] was based on the so-called heterogeneous
mean-field (HMF) theory [15,16], which neglects both
dynamical and topological correlations. To do so, the
actual quenched structure of the network—given by its
adjacency matrix Aij [3]—is replaced by an annealed

version, in which edges are constantly rewired at a rate

much faster than that of the epidemics, while preserving
the degree distribution PðkÞ. According to HMF theory, the
epidemic threshold of the SIS model takes the form
�HMF
c ¼ hki=hk2i [10], where hki and hk2i are the first and

second moments of PðkÞ [3]. Many real networks have a
heterogeneous degree distribution, often scaling as a power
law (PL), PðkÞ � k�� [1–3]. This implies that the second
moment diverges with the maximum degree kmax for a
degree exponent � < 3, leading to a threshold scaling

�HMF
c � k��3

max , which vanishes in the thermodynamic limit.
On the other hand, for � > 3, the second moment is finite
and consequently so is the epidemic threshold.
While HMF theory represents an exact result in the

case of annealed networks [17,18], its validity for real
(quenched) networks is limited. Indeed, an important
improvement over HMF theory is given by the quenched
mean-field theory (QMF) [19–21] which, while still
neglecting dynamical correlations, takes into account
the full form of Aij. Within this framework, the epidemic

threshold is predicted to be �QMF
c ¼ 1=�N , where�N is the

largest eigenvalue of the adjacency matrix. Given the
scaling of �N with the maximum degree, �N �
maxf ffiffiffiffiffiffiffiffiffi

kmax

p
; hk2i=hkig [22], QMF theory predicts the same

result as HMF theory for � < 5=2, while for � > 5=2 it

leads to �QMF
c � 1=

ffiffiffiffiffiffiffiffiffi
kmax

p
, that is, to a vanishing threshold

for any value of � (even for � > 3) in the thermodynamic
limit [11]. The prediction of QMF theory has been vali-
dated for � < 3 by means of large-scale numerical simu-
lations based on the quasistationary state method [18].
Numerical evidence for � > 3 is, however, less convincing
and has led to the following two criticisms.
Goltsev et al. [13] have considered, within the QMF

framework, the effects of eigenvector localization on the
steady state of the SIS model. According to their observa-
tions, in PL networks with � < 5=2, the principal eigen-
vector is delocalized, which implies that the density of
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infected nodes is finite above �QMF
c . However, for � > 5=2,

the principal eigenvector is localized, meaning that above

�QMF
c the system is active but activity is concentrated

around the hubs and their neighbors, leading to a number
of infected nodes that scales sublinearly with system size
and, therefore, does not constitute a true endemic state. The
endemic state should, instead, appear at a different thresh-
old, inversely proportional to the eigenvalue of the upper
delocalized state, and approximately corresponding to
the HMF value [13]. Therefore, the true threshold to the
endemic state would have a finite value for � > 3, at odds
with the interpretation of QMF theory made in [11].

This view is further pursued by Lee et al. [14] by partly
taking into account dynamical correlations. Their argu-
ment is as follows. Slightly above the QMF threshold,
hubs in a PL network become active but their activity is
restricted to their immediate neighborhood. This activity
has a characteristic lifetime �ðk; �Þ depending on the
degree and the value of the spreading rate �. When hubs
are directly connected to each other (the case of a clustered
network, in the nomenclature of Ref. [14]), activity can be
transferred between hubs if the lifetime �ðk; �Þ is suffi-

ciently large. In this case, above �QMF
c the network is able

to support an endemic state, characterized by the mutual
reinfection of connected hubs. In the case of unclustered
networks, however, hubs are not directly connected and the
reinfection mechanism does not work. Thus, the authors of

Ref. [14] claim that the state above �QMF
c is just a Griffiths

phase [23], where the density of infected nodes decays with
time more slowly than exponentially (logarithmically
indeed), while the actual epidemic threshold is located at
a higher, finite value of �. Within this picture a true zero
epidemic threshold in the thermodynamic limit occurs only
for � < 3.

While the arguments presented in Refs. [13,14] are
appealing and, apparently, lead to the conclusion that the
threshold is finite in random PL networks with � > 3, here
we reconsider the problem and provide analytical and
numerical evidence pointing in the opposite direction,
namely, a vanishing epidemic threshold for any small-
world network with a degree distribution decaying slower
than exponentially, in particular, power-law networks with
any �. To confirm this prediction, we propose a numerical
approach, based on the scaling analysis of the survival
time of the infection process, which is able to provide
very accurate estimates of the epidemic threshold even in
the regime where the quasistationary state method is
unreliable.

Our analytical approach is based on the consideration of
dynamical correlations, as in [14], but not restricted to
direct neighbors. The argument of [14] assumes that a
zero epidemic threshold can only occur in clustered net-
works, when hubs are directly connected to each other
and can reinfect each other within a time smaller than the
characteristic healing time �. However, as already pointed

out in Ref. [24], a direct connection is not a necessary
condition for the possibility of hub reinfection. Instead,
we should properly consider the possibility of reinfection
between two vertices i and j, separated by a topological
distance dij, possibly larger than 1. Indeed, the epidemic

threshold predicted by the HMF theory is actually based on
the local properties of the network alone, assuming that the
local structure will replicate in a treelike fashion forever,
preserving only the statistical properties of the network.
Then, above �HMF

c , we expect that a perturbation originated
in a node will be able to propagate as a supercritical
branching process forever. Below this threshold, this pro-
cess is not possible. Still, as we show below, the epidemic
can sustain itself, due to perturbations which propagate up
to distances of order lnðNÞ, where N is the network size.
To take into account dynamical correlations over distant

neighbors, we replace the original SIS dynamics by a
modified description of the SIS process valid over
coarse-grained time scales. On such longer temporal inter-
vals, it is possible that a given infected node i propagates
the infection to any other node j in the network via a
sequence of microscopic infection events of intermediate,
nearest neighbors nodes. The infective rate � is then
replaced by the effective rate ��ðdij; �Þ at which the infected
node i infects any other node j in the network when the
process is mediated by a chain of dij � 1 intermediate

nodes. On the coarse-grained time scale also the recovery
rate � of node i is replaced by an effective rate ��ðki; �Þ.
Overall, the evolution of the SIS dynamics over the coarse-
grained time scale is then given by

d�iðtÞ
dt

¼� ��ðki;�Þ�iðtÞþ
X
j�i

��ðdij;�Þ�jðtÞ½1��iðtÞ�; (1)

which is defined on a fully connected graph. The parame-
ters �� and �� reflect in this description the structure of the
original network. On long time scales node i is considered
as susceptible only when the node and all of its nearest
neighbors in the original graph are susceptible; hence, its

recovery rate is ��ðki; �Þ ¼ ��1ðki; �Þ � e�að�Þki (see the
Supplemental Material for numerical results and an ana-
lytical argument [25]), where að�Þ is a smooth growing
function of �. To evaluate the effective infective rate it is
convenient to assume that paths connecting nodes are
independent and made of nodes of degree 2. This leads to

the expression ��ðdij; �Þ � �e�bð�Þðdij�1Þ, with bð�Þ ¼
lnð1þ 1=�Þ (see Supplemental Material for an analytical
derivation and a numerical validation [25]). The assump-
tions made for determining �� are clearly not true in a real
network because there are many paths connecting the same
pair of nodes, and intermediate nodes have, in general,
degrees larger than 2. This implies that the infective rate
between two nodes that we use in the coarse-grained SIS
dynamics is smaller than the real one. Therefore, Eq. (1)
will provide an upper bound for the true epidemic thresh-
old of the original SIS dynamics and, thus, the absence of
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an epidemic threshold of the former will imply also its
absence in the latter.

Equation (1) can be applied to any network. We can,
however, get deeper insights in the case of small-world
random graphs, in which the average internode topological
distance takes the form [26]

dkk0 ¼ 1þ lnðNhki
kk0 Þ

ln�
; (2)

where � ¼ hk2i=hki � 1 is the average branching factor of
the network. Using the approximation Eq. (2) allows us to
coarse grain Eq. (1) for degree classes. After defining
�kðtÞ �

P
degðiÞ¼k�iðtÞ=NPðkÞ and plugging Eq. (2) into

Eq. (1), we obtain

d�kðtÞ
dt

¼ � ��ðk; �Þ�kðtÞ þ �N

�
k

Nhki
�
bð�Þ= ln�

�X
k0
k0½bð�Þ= ln��Pðk0Þ�k0 ðtÞ½1� �kðtÞ�: (3)

Note that the use of Eq. (2) implies that the local propa-
gation of the infection among directly connected nodes
is neglected; only reinfections between distant (� lnN)
nodes are taken into account. By performing a linear
stability analysis of this equation, we can see that the
critical epidemic threshold of the coarse-grained SIS dy-
namics �c is the solution of the transcendental equation
(see Supplemental Material for a detailed derivation [25])

1 ¼ �N
Xkmax

k¼kmin

PðkÞ�ðk; �Þ
�

k2

Nhki
�
bð�Þ= ln�

: (4)

In general, the maximum degree of the network kmax is a
growing function ofN. If we further assume that the degree
distribution decays slower than an exponential, Eq. (4)
can be approximated as the integral near the upper bound
kmax; i.e.,

1 ¼ �

að�Þ e
að�Þkmax�½bð�Þ= ln�� ln½Nhki=k2max��ln½1=NPðkmaxÞ�: (5)

When PðkÞ decays slower than an exponential, kmax grows
faster than lnN. Therefore, as the system size grows while
keeping � fixed, there is a point where the first term in the
exponential becomes larger than the other two (negative)
terms and, eventually, the right-hand side of Eq. (4)
becomes larger than 1. As a consequence, the epidemic
threshold of the coarse-grained SIS dynamics starts
decreasing as N increases, thus going to zero in the ther-
modynamic limit. Making the additional assumption that
að�Þ � a�2 for � � 1 (which is compatible with numeri-
cal simulations, see Supplemental Material [25]), we con-
clude that the upper bound of the epidemic threshold
decreases as 1=

ffiffiffiffiffiffiffiffiffi
kmax

p
, with additional logarithmic correc-

tions to scaling. Interestingly, this scaling is similar to the
one predicted by the QMF theory. However, in our case, the

threshold marks the onset of a true endemic state where a
finite fraction of all nodes of the system are active.
The case of non-small-world networks can be consid-

ered along the same lines. Unfortunately, a general formula
for the average topological distance as a function of the
nodes’ degrees is not known. Nevertheless, the absence of
long-range connections in non-small-world networks sug-
gests that node degree is not as determinant as in the case
of small-world ones. Thus, to get some understanding, we
assume an internode distance independent of the degree
and scaling as a power law with system size, i.e., d ¼ 1þ
�N	. An analysis similar to the case of small-world net-
works (see Supplemental Material [25]) concludes that
non-small-world networks have a vanishing epidemic
threshold only if kmax grows faster than N	. This result
explains the finite epidemic threshold in the (3, 3)-flower
model [27] found in Ref. [14], even if the model generates
a PL network with � ¼ 1þ ln6= ln2 � 3:58. Indeed, this
model generates a non-small-world network with

	 ¼ ln3= ln6, whereas kmax � Nln2= ln6 [27].
To check the accuracy of our theory, we propose a

method to estimate the critical point of absorbing state
phase transitions. The method is based on the analysis of
individual realizations of the process starting with a single
infected node. Each realization is characterized by its life-
time T and coverage C, where the latter is defined as the
fraction of distinct nodes ever infected during the realiza-
tion. In the thermodynamic limit, realizations can be of two
types: finite or endemic. Finite realizations have a finite
lifetime and, therefore, a vanishing coverage in the ther-
modynamic limit. Endemic realizations, on the other hand,
have an infinite lifetime and their coverage is equal to 1.
Below the epidemic threshold, all realizations are trivially
finite. Above the threshold, there is a non-null probability
Pendð�Þ that a realization that starts at a single node
becomes endemic, making Pend a good order parameter
of the phase transition. Akin to the role of the average size
of finite clusters in standard percolation [28], in our
approach the role of susceptibility is played by the average
lifetime of finite realizations �Tð�Þ, which diverges at �c

both from below and from above.
In finite systems, the major problem is to determine

when a realization is endemic or not. One possibility is
to declare a realization as endemic whenever its coverage
reaches 1. However, from a computational point of view,
this option is too costly. We therefore take advantage
of the following fact. In an infinite size system, whenever
the coverage of a realization reaches a finite fraction
(even small), the probability of the realization being
endemic is 1. Then, in finite systems, we declare a realiza-
tion as endemic whenever its coverage reaches a prede-
fined value (in our case C ¼ 0:5, see Supplemental
Material for tests with other values [25]) and stop the
realization at this point. Then, we can measure the average
lifetime of finite realizations �Tð�;NÞ and the position of its
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peak, which we take as the estimate of the epidemic
threshold for finite systems. Finally, we note that the
method can be applied starting from any node of the net-
work with identical results as far as the position of the
threshold is concerned. Here, to minimize the fluctuations
of �Tð�;NÞ close to the critical point, we always start our
simulations from the node with highest degree.

Figure 1 shows the result of this program in random PL
networks generated with the uncorrelated configuration
model [29]. The average lifetime �Tð�;NÞ behaves as an
effective susceptibility and, thus, we estimate the epidemic
threshold for a finite network as the position of its peak
�maxðNÞ. These estimates are shown in the bottom plots
and compared with the upper bound given by a numerical
solution of Eq. (4) and where �ðk; �Þ is obtained from
numerical simulations. As it can be clearly seen, the upper
bound predicted by our theory is in very good agreement
with numerical simulations, even for � ¼ 4, a network
clearly ‘‘unclustered’’ according to [14].

Note that, due to the approximation made in Eq. (2), our
theory neglects the propagation of the epidemic mediated
only by connected nodes, which is the approach taken in
the HMF theory. Therefore, one should expect that the true
upper bound for the real epidemic threshold is the mini-
mum between the estimation given by Eq. (4) and �HMF

c .
From this perspective, it is surprising that the epidemic
threshold measured from simulations is higher than �HMF

c

for small system sizes. Note, however, that the HMF theory
of the SIS dynamics completely neglects dynamical

correlations. These correlations account for the fact that,
whenever a node is infected, there is a high probability for
the node that infected it to still be infected. Therefore, the
number of neighbors available to an infected node to
further propagate the epidemics is, in most cases, its degree
minus 1. Consequently, a better upper bound for the local
propagation of the dynamics is given by the HMF theory of
the susceptible-infected-recovered (SIR) model; that is,
�SIR
c ¼ hki=hkðk� 1Þi. Bottom plots of Fig. 1 show the

estimation of �SIR
c , which is always above the real

threshold.
In summary, the behavior of the SIS epidemic threshold

in networks depends on a delicate balance between their
local and global properties. Both HMF and QMF theories
are constructed by considering only the local dynamics of
infections among nearest neighbors, and thus fail to
provide a correct description. Here we have presented a
theoretical approach to epidemics in networks, built upon
previously sketched concepts, that takes into account the
full network structure, and that considers reinfection events
among nodes not directly connected, i.e., mediated by
chains of other nodes. Our theoretical analysis, while based
in some (reasonable) approximations, is well backed up by
means of reliable numerical evidence. The main conclu-
sion of both approaches is that the epidemic threshold in
the SIS model is effectively null in the thermodynamic
limit in all random small-world networks with a degree
distribution decaying slower than exponentially. Beyond
this remarkable result, our work highlights the subtle role
that dynamical correlations might play in nonequilibrium
heterogeneous systems near criticality.
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[29] M. Catanzaro, M. Boguñá, and R. Pastor-Satorras, Phys.
Rev. E 71, 027103 (2005).

PRL 111, 068701 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

9 AUGUST 2013

068701-5

http://dx.doi.org/10.1103/PhysRevLett.86.3200
http://dx.doi.org/10.1103/PhysRevLett.86.3200
http://dx.doi.org/10.1103/PhysRevLett.105.218701
http://dx.doi.org/10.1103/PhysRevLett.105.218701
http://dx.doi.org/10.1038/srep00371
http://dx.doi.org/10.1038/srep00371
http://dx.doi.org/10.1103/PhysRevLett.109.128702
http://dx.doi.org/10.1103/PhysRevE.87.062812
http://dx.doi.org/10.1103/PhysRevE.87.062812
http://dx.doi.org/10.1103/RevModPhys.80.1275
http://dx.doi.org/10.1103/RevModPhys.80.1275
http://dx.doi.org/10.1103/PhysRevE.79.036110
http://dx.doi.org/10.1103/PhysRevE.79.036110
http://dx.doi.org/10.1103/PhysRevE.86.041125
http://dx.doi.org/10.1103/PhysRevE.86.041125
http://dx.doi.org/10.1145/1284680.1284681
http://dx.doi.org/10.1109/TNET.2008.925623
http://dx.doi.org/10.1109/TNET.2008.925623
http://dx.doi.org/10.1209/0295-5075/89/38009
http://dx.doi.org/10.1073/pnas.0937490100
http://dx.doi.org/10.1073/pnas.0937490100
http://dx.doi.org/10.1088/0305-4470/39/22/R01
http://dx.doi.org/10.1214/09-AOP471
http://link.aps.org/supplemental/10.1103/PhysRevLett.111.068701
http://link.aps.org/supplemental/10.1103/PhysRevLett.111.068701
http://dx.doi.org/10.1103/PhysRevE.72.026108
http://dx.doi.org/10.1088/1367-2630/9/6/175
http://dx.doi.org/10.1088/1367-2630/9/6/175
http://dx.doi.org/10.1103/PhysRevE.71.027103
http://dx.doi.org/10.1103/PhysRevE.71.027103

