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We study the Skyrmion dynamics in thin films under a temperature gradient. Our numerical simulations

show that both single and multiple Skyrmions in a crystal move towards the high temperature region,

which is contrary to particle diffusion. Noticing a similar effect in the domain wall motion, we employ

a theory based on magnon dynamics to explain this counterintuitive phenomenon. Unlike the temperature

driven domain wall motion, the Skyrmion’s topological charge plays an important role, and a transverse

Skyrmion motion is observed. Our theory turns out to be in agreement with numerical simulations, both

qualitatively and quantitatively. Our calculation indicates that a very promising Skyrmion dynamic

phenomenon can be observed in experiments.
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A Skyrmion is a topological configuration in which local
spins wrap around the unit sphere an integer number of times
[1]. After decades of theoretical discussions [2,3], it was
recently observed in a bulk sample ofMnSi [4]. Thismaterial
is a typical helimagnet where the inversion asymmetry in-
ducedDzyaloshinsky-Moriya (DM) interaction is significant;
the latter plays an important role in generating Skyrmion
configurations. The neutron scattering study [4] shows that
Skyrmions perfectly pack themselves in triangle crystals as a
compromise between the DM interaction and ferromagnetic
Heisenberg exchange. However, due to the competition with
the conical phase, the Skyrmion phase unfortunately survives
only in a narrow window at finite temperatures [4]. More
recently, a real space image in a FexCo1�xSi thin film [5]
demonstrated that a Skyrmion crystal phase can be consid-
erably enlarged in two dimensions, and stable down to zero
temperature [6–8]. Further exploration shows that Skyrmion
phases are not only present in these two metallic materials,
but also in insulating materials like Cu2OSeO3 [9] and
BaFe1�x�0:05ScxMg0:05O19 [10].

After the discovery of Skyrmion crystals, numerous
efforts were devoted to the manipulations of Skyrmions.
Because of their topological nature, Skyrmions remain sta-
ble against moderate perturbations. Therefore, controlling
the motion of Skyrmions would allow for potential appli-
cations of Skyrmion physics. To this end, Skyrmion dynam-
ics has been discussed in detail [11–13]. One well accepted
way to control the motion of Skyrmions in metallic thin
films is via a current. Unlike the regular domain wall motion
driven by the current, the Skyrmion motion can occur at a
tiny current threshold [14]. This advantage makes low-
dissipative Skyrmion manipulation possible. An interesting
question is if it is possible to drive the motion of insulating
Skyrmions. If the answer is positive, one can thoroughly
eliminate the dissipations from the conducting current.

In this Letter, we study the directional motion of insu-
lating Skyrmions under a temperature gradient. Insulating

materials help us to eliminate the influence of conduction
electrons [14,15]. Interestingly, our study shows that
Skyrmions unconventionally move towards high tempera-
ture regions, contrary to the usual Brownian motion.
A Skyrmion as a large-size quasiparticle appears to have
a negative diffusion coefficient. Followed by numerical
simulations, a magnon assisted theory is employed to
explain this novel phenomenon.
Numerical simulation.—To simulate the magnetization

dynamics at finite temperature, the stochastic Landau-
Lifshitz-Gilbert (LLG) approach is employed [16,17].
The effect of the thermal fluctuation at the temperature T
is characterized by a random fieldL in addition to the usual
LLG equation. The equation of motion is given by

_m ¼ ��m� ðHeff þLÞ þ �m� _m; (1)

where � ¼ g=@ is the gyromagnetic ratio and � is the
Gilbert damping coefficient. The magnitude of the magne-
tization m is normalized to unity. In the case of ferro-
magnetic insulators � can be tiny, due to the absence
of conduction electrons to dissipate the magnetization
energy. Heff ¼ �@H=@m is the effective field acting on
the local magnetization m. In order to eventually achieve
thermal equilibrium, the dissipation-fluctuation relation
hL�ðr; tÞL�ðr0; t0Þi ¼ �����ðr� r0Þ�ðt� t0Þ is satisfied,

where � ¼ �a2kBT=� and a is the lattice constant. The
average h i is taken over all the realizations of the fluctua-
tion field. Here, a uniform but small temperature gradient is
assumed. The thermal fluctuation of each spin is about
kBT, which is about J=10 in our simulation. As long as it
is larger than the temperature difference between neigh-
boring sites, local equilibrium can be established and this
stochastic LLG approach is justified. In this case �,
together with T, is a linear function of the position. In
what follows, the temperature gradient is turned on longi-
tudinally along the x direction. Numerically, the stochastic
field L�ðr; tÞ is created by a random number generator with
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the mean square controlled by the temperature, and the
stochastic LLG equation [Eq. (1)] is integrated out in the
deterministic Heun scheme [16], with a time step of
0:05@=J. The initial Skyrmion configurations are given
by classical Monte Carlo updates followed by further
relaxation realized by solving the LLG equation with a
fourth order Runge-Kutta method [5].

We employed the standard model given by

H ¼X
hiji

½�Jmi �mj þDij � ðmi �mjÞ� �
X
i

H �mi; (2)

where the DM vector Dij ¼ Dr̂ij points from one local

magnetization to the other. The magnetic field H ¼ Hẑ
is perpendicular to the film. H relates the real magnetic
field h by H ¼ �Bh. In the simulations, the Heisenberg
exchange J=kB ¼ 50 K, and the strength of the DM inter-
action D ¼ 0:5J. Note that in reality D is an order of
magnitude smaller. The advantage of a large D in the
current simulation is to reduce the Skyrmion radius and
save the calculation resources. The lattice spacing a is 5 Å,
and the full simulated sample size is 150a� 50a, which
is much larger than the Skyrmion radius (about 5a).
Therefore the finite size effect is safely negligible. The
Gilbert damping � is set to 0.1. This value is relatively
larger than the realistic case, but it is helpful to obtain a
relatively larger stochastic field to make the Skyrmion
motions transparent in simulations.

The phase diagram of the Hamiltonian in Eq. (2) is
already known [5,18]. The phase transition between the
Skyrmion crystal and the ferromagnetic phase appears to
be of first order and, therefore, the coexistence of both
phases is observed. By tuning the external magnetic fieldH
up to a critical value, the Skyrmion crystal is melted so that
one can have a chance of obtaining a single Skyrmion on
the thin film. The snapshots of a single Skyrmion are
shown in Fig. 1(a). Once the magnetic field is further redu-
ced, a perfect Skyrmion crystal is energetically favored
[see Fig. 1(c)]. The color bars in these plots indicate the
topological charge density q ¼ ð1=4�Þm � ð@xm� @ymÞ.
The total topological charge Q ¼ R

d2rq counts the num-

ber of Skyrmions in the lattice.
As the simulation goes on, the single Skyrmion starts to

move under the effect of the stochastic field. Although the
instant velocity appears to be random, the overall velocity
is nonzero. Quantitatively, we can define the center posi-
tion rc of the Skyrmion weighed by the topological charge:
rc ¼ R

d2rm � ð@xm � @ymÞr= R d2rm � ð@xm � @ymÞ.
Figure 2(a) shows a typical simulation result of the relation
between the center position and the simulation time.
At short time scales, the Skyrmion oscillates around an
average position, in accordance with the thermal fluctua-
tion. In the long run, the Skyrmion drifts directionally. The
mean velocity is derived by averaging over 1000 simulated
events. Its relation with the temperature gradient is shown
in Fig. 2(b). The longitudinal velocity is proportional to the

temperature gradient. Meanwhile, the transverse velocity
is nonzero and linear in temperature gradient as well,
although the magnitude is one order of magnitude smaller
than the longitudinal one. The transverse motion of the
Skyrmion is another example of the Skyrmion Hall effect
in analogy to the conventional Hall effect for electrons [11].
A surprising result is that the Skyrmion moves from the

low temperature region to the high temperature one, as
shown in Fig. 1(b). It is generally known that under a
temperature gradient, particles like electrons should
move to the cold terminal, due to the low density of hot
particles at the cold end. This directional Brownian motion
gives rise to various phenomena such as the Seebeck effect.
Our result contradicts this physical picture. This effect
even holds also for the entire Skyrmion crystal in which
multiple Skyrmions are driven by the temperature gradient.

FIG. 1 (color online). Snapshots of Skyrmion motions. Color
bars stand for the topological charge density q. (a) At the critical
magnetic field of H ¼ 0:3J, a single Skyrmion is generated.
(b) Under a temperature gradient, it moves from low to high
temperature. (c),(d) The Skyrmion crystal moves in a similar
way under a lower magnetic field H ¼ 0:15J.

FIG. 2 (color online). (a) A typical simulation showing the
Skyrmion’s instantaneous longitudinal positions. Although it
fluctuates under finite temperature, a forward average velocity
is observed. (b) A linear scaling between the longitudinal veloc-
ity and the temperature gradient (circle). A nonvanishing vy is

also addressed (square), indicating the Skyrmion Hall effect.
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As shown in Fig. 1(d), the whole crystal shifts towards
high temperatures in a similar way. However, the crystal
melts a little bit during the diffusion process.

Theory.—In order to understand the counterintuitive
diffusion direction, a magnon assisted theory is employed
[19]. In the simplest case of a ferromagnet polarized along
ẑ, the spin’s deviation (nx, ny) from its equilibrium direc-

tion is described by the presence of magnons. The magnon

creation operator is ay ¼ ðnx � inyÞ=
ffiffiffi
2

p
, and the magnon

number operator is � ¼ aya ¼ ð1=2Þðn2x þ n2yÞ. The spin

component along the equilibrium direction is simply nz¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðn2xþn2yÞ

q
�1��. This result shows that each magnon

carries one spin polarized antiparallel to the equilibrium
direction. Therefore, once there is a Skyrmion under
a temperature gradient, as shown in Fig. 3(a), the magnon
as a low-lying excitation responds much more actively than
the Skyrmion itself. As a typical quasiparticle, the magnon
diffuses from the hot to the cold end in the usual way.
Because of the antiparallel alignment of the spin, the
magnon current provides a negative transfer torque on
the Skyrmion. Because of the conservation of total angular
momentum, the Skyrmion moves in the opposite way.

To quantitatively formulate this physical picture, let us
decompose the local magnetizations into the slow mode
ms and the orthogonally fast mode mf ¼ ms � n: m ¼
ð1�m2

fÞ1=2ms þmf. The slow mode is responsible for

the equilibrium configuration of the Skyrmion. Substituting
it into the continuum version of the Hamiltonian H ¼R
d2r½ð1=2ÞJðrmÞ2 þ ðD=aÞm � ðr �mÞ � ðH=a2Þ �m�

and keeping only the dominant terms arising from the
fluctuations of the fast mode, one can obtain the following
equation of motion for the slow mode [18,19]:

_ms ¼ ��Ja2j � rms � �ms �Lþ �ms � _ms; (3)

where ji ¼ ms � ðn� @inÞ ¼ ið@iaya� ay@iaÞ is the
magnon current induced by the temperature gradient.
Note that the first term on the right-hand side of Eq. (3)
is analogous to the spin transfer torque provided by the
itinerant electrons in the adiabatic limit [11,20]. However,
the sign is different in the two cases. The negative sign
here corresponds to the negative transfer torque from the
magnons.
Ignoring the deformation of the Skyrmion, the slow

modes can be written in terms of the collective coordinates
uðtÞ as msðr; tÞ ¼ m0

sðr� uðtÞÞ, where m0
s is the ground

configuration, and uðtÞ describes the position of the
Skyrmion. Inserting it into Eq. (3) and integrating over
the ground configuration, one finally obtains the equation
of motion for the collective coordinates Q"ij _ujðtÞ ¼
Q�Ja2"ijjjþ 2�	 _uiðtÞþ ð�=4�ÞRd2r@im0

s �Lðrþu; tÞ,
where the shape factor 	 ¼ ð1=8�ÞR d2r@im

0
s � @im

0
s

is close to unity. We define a collective stochastic force
li acting on the Skyrmion as a whole by liðu; tÞ ¼R
d2r@im

0
s �Lðrþ u; tÞ, whose average then satisfies

hliðu; tÞljðu0; t0Þi ¼ �0�ij�ðu� u0Þ�ðt� t0Þ with a new

mean square �0 ¼ 8�	� ¼ 8��	a2kBT=�. The collec-
tive equation of motion resembles the standard Langevin
equation. Let Pðr; tÞ be the probability to find the
Skyrmion at position r and the time t. It thus satisfies the
Fokker-Planck equation [21]: ð@P=@tÞ ¼ �½�Ja2jx �
2ð�=4�QÞ2ð@x�0Þ�@xP � �Ja2jx2�	@yP þ ð�=4�QÞ2�
�0ð@2x þ @2yÞP. At the current stage, we are only interested

in the lowest order traveling wave solution of the Fokker-
Planck equation, namely Pðr; tÞ ¼ Pðr� vtÞ. The last term
provides nonlinearity: it thus broadens the wave package
and can be neglected. Finally, we obtain the average
velocity of the Skyrmion in both the longitudinal and
transverse directions

vx ¼ �Ja2jx � �

�Q2
�	a2kB

dT

dx
� vM

x � vB; (4)

vy ¼ 2�	vM
x : (5)

The contributions from the magnon and the Brownian
motion are separable and are denoted, respectively, by
vM
x;y and v

B. Equation (4) shows explicitly that their effects

are completely opposite: the Skyrmion is pushed by the
Brownian motion towards the cold terminal, while it is
pulled back to the hot end by the magnon. On the other
hand, as the temperature gradient is exerted along the x
direction, the Brownian motion along the y direction van-
ishes on the average. Only the magnon effect contributes to
the transverse velocity, which is a factor � smaller than the
longitudinal one, agreeing with the numerical simulation in
Fig. 2(b). This Hall effect of the Skyrmion motion is
closely related to the topology of the Skyrmion texture

(a) (b)

FIG. 3 (color online). (a) Sketch of physical picture for the
Skyrmion motion towards high temperature. The long arrow
(red) stands for the local magnetization constructing the
Skyrmion configuration. The short arrow (blue) stands for the
spin of the magnon, which points opposite to the local magne-
tization. Under a temperature gradient, the magnons move from
the high temperature region to the low temperature one indicated
by j, resulting in an opposite motion v for the Skyrmion. (b) The
scaling of Skyrmion velocity with the Gilbert damping �. vx is
inversely proportional to � (circle and the inset). vy is almost

independent of � (square).
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captured by the nonzero topological charge Q. Generally
speaking, a directional transverse motion requires the
breaking of time reversal symmetry. Here it is the dissipa-
tive damping � that breaks time reversal. Therefore one
expects the proportionality between the transverse velocity
and the Gilbert damping �.

Now it is important to evaluate the magnon current.
To this end, we can apply a semiclassical approach with
the relaxation time approximation [22]. The variation
from the Bose-Einstein distribution f is given by �f¼

ð@f=@"Þð"=TÞv�rT. 
 is the relaxation time. The mag-

non current is consequently j¼a2
Rðd2k=ð2�Þ2Þkxayk ak¼

a2
Rðd2k=ð2�Þ2Þ
kxð@f=@"Þð"=TÞð@"=@@kxÞðdT=dxÞ. In

this simple evaluation, higher order processes such as
magnon-magnon interactions are neglected so that 
 is
given by the Gilbert damping only. In the presence of a
nonzero �, the magnon frequency acquires an imaginary
value �!. Therefore the magnon number decays exponen-
tially as �ðtÞ � expð�2�!tÞ. The relaxation time is thus

 ¼ 1=ð2�!Þ. According to the work by Petrova and
Tchernyshyov [23], linear dispersion is respected in the
Skyrmion crystal, given by "@! ¼ ð1=2ÞM0Da�@k �
s@k, where M0 is the magnitude of the local spin. s is the
effective velocity of the magnon. Finally one obtains the
magnon current given by

j ¼ jx ¼ �

24
a2
�
kB
@s

�
2 T

�

dT

dx
: (6)

This result indicates that the magnon current, as well as the
Skyrmion velocity, is proportional to the temperature
gradient. It is quite consistent with the numerical result
in Fig. 2. This evaluation also explains why the magnon
contribution is overwhelming in Eq. (4). The ratio between
these two contributions is vB=vM

x ¼ ð6=�Þ�2ðD2=JkBTÞ.
It is definitely a small number due to the small DM
interaction and the tiny damping coefficient. The net effect
of the Brownian motion is almost invisible in this case.

Another interesting conclusion from Eq. (6) is that j is
inversely proportional to �. Consequently, the longitudinal
Skyrmion velocity is also inversely proportional to �,
while the transverse velocity is independent of�. In reality,
dislocations or imperfections of the Skyrmion lattice may
affect the magnon dispersion significantly. However, as
long as the magnon-magnon interaction is negligible, the
inverse proportionality between the longitudinal velocity
and the Gilbert damping always holds. In the case of
insulating helimagnets, as the magnetization energy can
hardly be dissipated away, the Gilbert damping is tiny. The
Skyrmion velocity can be quite large instead. In order to
test this theory, we scaled the velocity with respect to �
from the simulations, as shown in Fig. 3(b). A nice inverse
proportionality between vx and � is explicitly addressed.
vy remains almost the same for different � values. These

results match well with our theory.

A similar magnon assisted theory was applied to the case
of domain wall motion [17,19]. However, the difference
brought by the topology of the Skyrmion is profound. In
the derivation of the collective equation of motion, the
quantization of topological charge Q is applied, which is
the key feature of the Skyrmion. For the domain wall case,
the total topological charge vanishes, so that this method
does not apply. The collective equation of motion for the
Skyrmion provides us a universal dynamics that weakly
depends on the detailed structure of the Skyrmion.
Furthermore, the Skyrmion stability allows us to treat it
as a quasiparticle, so that the Fokker-Planck equation
comes into play. The generalization from a 1D domain
wall to a 2D Skyrmion crystal brings new phenomena such
as the Skyrmion Hall effect.
Estimates.—For Cu2OSeO3, J=kB � 50 K, M0 ¼ 1=2,

and the spiral period is � � 2�Ja=D� 50 nm [9]. Let

a� 5 �A, thus D=kB � 3 K, and the effective velocity
s� 15:6 m=s. As a reasonable estimate, let � ¼ 0:01,
then our theory gives vx�1:2�10�4ðdT=dxÞðm=sÞ. In
the numerical simulations, vx�10�7ðdT=dxÞ for �¼0:1.
This 3 orders of magnitude difference can be perfectly
fixed by noting a difference of a factor �10 in the DM
interaction D, and another factor of 10 in the Gilbert
damping �. This serves as a quantitative confirmation of
our theory. Experimentally a reasonably large temperature
gradient is about 1 K per millimeter [24], so that a velocity
of 0:1 m=s can be achieved. This Skyrmion motion can be
traced by real-space spectroscopies such as the Lorentz
TEM. Another interesting issue is how to observe this
phenomenon by transport measurements. As itinerant elec-
trons are absent, signals of the topological Hall effect
present in metallic Skyrmion crystals [25,26] are missing
here. Probably the measurement technique of the spin
Seebeck effect would come to help as a moving Skyrmion
carries a spin current. There is no spin polarized electron
current in this system, so that the signal of the moving
Skyrmion would be dominant.
Compared to the domain wall motion, a peculiar

advantage of the Skyrmion motion is its tiny pinning
indicated by the small threshold current in the current
driven case. This pinning results from impurities and
lattice imperfections, which have basically the same level
in insulating and metallic Skyrmion crystals. A low
critical current of 106 A=m2 is observed in MnSi [14],
which corresponds to a theoretical velocity of 10�4 m=s
[11]. Our estimate of the temperature gradient driven
Skyrmion motion is far beyond this threshold; thus, it
can be easily realized. The interaction between magnons
and Skyrmions discussed here might open a new field of
‘‘Skyrmionic magnonics.’’
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