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The perfect transmission in a graphene monolayer and the perfect reflection in a Bernal graphene

bilayer for electrons incident in the normal direction of a potential barrier are viewed as two incarnations

of the Klein paradox. Here we show a new and unique incarnation of the Klein paradox. Owing to the

different chiralities of the quasiparticles involved, the chiral fermions in a twisted graphene bilayer show

an adjustable probability of chiral tunneling for normal incidence: they can be changed from perfect

tunneling to partial or perfect reflection, or vice versa, by controlling either the height of the barrier or the

incident energy. As well as addressing basic physics about how the chiral fermions with different

chiralities tunnel through a barrier, our results provide a facile route to tune the electronic properties

of the twisted graphene bilayer.
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Because of graphene’s two-dimensional honeycomb
lattice, quasiparticles in graphene mimic Dirac fermions
in quantum electrodynamics (QED) [1–8]. Therefore, this
condensed-matter system is expected to help demonstrate
many oddball effects predicted by QED. One example is
the Klein paradox [9–11]. The chirality of the charge
carriers in a graphene monolayer ensures perfect quantum
tunneling for electrons incident in the normal direction of a
potential barrier [9,10]. This is viewed as a direct experi-
mental test of the Klein’s gedanken experiment [11]. In
light of possible applications, the chirality suppresses
backscattering of quasiparticles and protects high charge
carrier mobility of graphene despite unavoidable inhomo-
geneities [3,12,13]. The emergence of superlattice Dirac
points in a graphene superlattice, as reported very recently
[14–16], is also directly related to the chiral nature of the
Dirac fermions [17–20]. Owing to the different chiralities
of the quasiparticles involved, the quantum tunneling in the
Bernal graphene bilayer leads to the opposite effect: mas-
sive chiral fermions are always perfectly reflected for a
sufficiently wide barrier for normal incidence [9]. This
result implies that it may be possible to find different chiral
fermions in a graphene system to show ‘‘designable’’
tunneling properties. In this Letter, we will demonstrate
subsequently that a twisted graphene bilayer is a good
candidate to achieve this goal. The chiral fermions in
twisted graphene bilayers show the adjustable probability
of chiral tunneling for a normal incidence. The transmis-
sion probability can be changed between 1 and 0 by
controlling either the height of the barrier or the incident
energy. This unique tunneling behavior is of potential
application in designing future electronic devices.

Figure 1(a) shows the general scheme where a chiral
electron starts penetrating through a potential barrier UðxÞ,
which has a rectangular shape with width D and height
Eþ �U (here E is the incident energy of the electron, �U
is the energy difference between the potential barrier and

the incident energy). The potential barrier is infinite along
the y axis. The rectangular shape assumption of the barrier
means that the characteristic width of the edge smearing is
much smaller than the electron wavelength, but much
larger than the lattice constant. Such an assumption dis-
allows scattering to mix the two valleys in graphene and,

FIG. 1 (color online). Tunneling through a barrier in a twisted
graphene bilayer. (a) Schematic diagram of an electron coming
to a potential-energy barrier of height Eþ�U and width D. E is
the Fermi energy of the twisted graphene bilayer and the
one-dimensional barrier is infinite along the y direction.
(b) Electronic spectrum of the quasiparticles in a twisted gra-
phene bilayer with a finite interlayer coupling in the proximity of
one of the two valleys. Two saddle points form between the two
Dirac cones, K and K�. (c) Density plot of the energy dispersion
of the twisted graphene bilayer around K and K�. kx is the
direction perpendicular to the barrier.
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consequently, we only need to consider scattering electrons
from one valley [9]. This tunneling problem was first
considered in Ref. [9] for chiral electrons in a graphene
monolayer and a Bernal graphene bilayer. This system can
be divided into three distinct regions: the left of the barrier
(x < 0), inside the barrier (0< x<D), and the right of the
barrier (x > D). If we know the wave functions in the three
regions, then it is straightforward to solve this tunneling
problem. For a twisted graphene bilayer, the Dirac
points of the two layers no longer coincide and the zero

energy states occur at ~k ¼ �ð�Kx=2;�Ky=2Þ and ~k ¼
ð�Kx=2;�Ky=2Þ in layer 1 and 2, respectively. Here

(�Kx, �Ky) is the relative shift between the corresponding

Dirac points of the twisted graphene bilayer. Its modulus is

2j ~Kj sinð�=2Þ with j ~Kj ¼ 4�=3a and a �0:246 nm the
lattice constant of the hexagonal lattice. The displaced
Dirac cones of the twisted bilayer cross and two intersec-
tions of the saddle points along the two cones appear in the
presence of interlayer coupling t? [21,22], as shown in
Figs. 1(b) and 1(c). The saddle points result in two
low-energy van Hove singularities (VHSs) at �EV ¼
�1=2ð@�Fj�Kj � 2t?Þ in the density of states (here
�F � 1:0� 106 m=s is the Fermi velocity). The band
structure of the twisted graphene bilayer was subsequently
confirmed experimentally by Raman spectroscopy, scan-
ning tunneling spectroscopy, and angle-resolved photo-
emission spectroscopy [15,23–28]. Theoretically, it was
predicted that electron-electron interaction in the Bernal
graphene bilayer will split the quadratic band touch point
into two Dirac points and result in similar energy

dispersion as that of a twisted graphene bilayer (it was
denoted as a nematic broken symmetry state in the Bernal
graphene bilayer) [29–31].
When we consider only low-energy excitations, the

effective Hamiltonian of the twisted graphene bilayer can
be described by [21,22,32,33]

Heff ¼ � 2�2
F
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where the complex number k is defined as k ¼ kx þ iky,

and �K ¼ �Kx þ i�Ky. Here (kx, ky) is the two-

dimensional wave vector ~k relative to the midpoint of the
two Dirac points. A low-energy expansion of Hamiltonian
(1) around ��K=2, by defining k ¼ q� �K=2, yields
two Dirac Hamiltonians �ð2�2

F�K=15~t?Þ ~� � ~q, which
have identical chirality as that of graphene monolayer
[32]. It indicates that the low-energy tunneling behavior
in twisted graphene bilayer should be similar to that in
graphene monolayer. Theoretically, the continuum limit of
the Hamiltonian (1) is valid for a � L (here L is period of
the moire patterns in twisted graphene bilayer), i.e., for
small twist angles. In experiments, the VHSs were
observed in a twisted graphene bilayer with � � 10	
[15,23–28]. It is, therefore, reasonable to assume that
the Hamiltonian (1) is a good approximation for � � 10	
(L� 1:4 nm for � ¼ 10	). The energy spectrum derived
from Hamiltonian (1) is

Eðkx; kyÞ ¼ � 2�2
F
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Obviously, the energy spectrum is symmetric between the
positively and negatively charged chiral fermions; there-
fore we only consider the nearest neighbor hopping in
Hamiltonian (1). This symmetry, which is analogous to
the inherent symmetric structure between electrons and
positrons of the Universe, is crucial to the chiral tunneling
in all the graphene systems (including graphene mono-
layer, Bernal graphene bilayer, and twisted graphene
bilayers) [9]. A large next-nearest-neighbor hopping
breaking the symmetry of the positively and negatively
charged chiral fermions is expected to destroy the chiral
tunneling.

Unlike the case of single layer and Bernal bilayer gra-
phene, the group velocity of wave packets in twisted
bilayer graphene is not parallel to its wave vector any
more. It could be determined by ~�k0 ¼ ð1=@ÞðrkEÞk0 . In
our calculation, we also use the rectangular shape assump-
tion of the barrier and, consequently, intervalley scattering
between different valleys in graphene can be neglected.
Therefore, we only consider scattering electrons from the

K and K� cones. The velocity field of quasiparticles with
various energies is shown in Fig. S1 (see Supplemental

Material [34]). Inserting a trial wave function �ðx; yÞ ¼
ð’AðxÞ
’BðxÞÞeikyy into equation H� ¼ E� with the Hamiltonian

(1), we obtain
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There are four possible solutions for a given energy. Two of
them are propagating waves expð�ikx1xÞ and the other
two are exponentially growing and decaying modes
expð�kx2x). Here, kx1 and ikx2 are wave vectors. The
wave function in the three different regions of the tunneling
problem can be written in terms of incident and reflected
waves. The reflection coefficient and the transmission
coefficient are determined from the continuity of the
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wave functions and their derivatives (see Supplemental
Material [34] for details of the analysis and calculation).

Figure 2 shows examples of the transmission probability
as a function of the incident angle Tð’Þ for a twisted
graphene bilayer. Here we only show the transmission
probability of quasiparticles in the K cone. The transmis-
sion probability of quasiparticles in the K� cone is mirror
symmetric about ’ ¼ 0	 when the potential barrier is
parallel to the line connecting K and K�, as shown in
Fig. S1 [34]. If we change the orientation of the potential
barrier, the transmission probability for the two cones
becomes asymmetry about ’ ¼ 0	. However, the main
result, as discussed subsequently, is valid and robust irre-
spective of the orientation of the barrier.

To elucidate differences and similarities of the Tð’Þ
between the twisted graphene bilayer and graphene

monolayer, we also calculated the same tunneling
problem of the system described by the Hamiltonian
ð2�2

F�K=15~t?Þ ~� � ~q for comparison. For low incident
energy and a small value of �U, the angular dependence
of the transmission probability for the twisted graphene
bilayer resembles that of a graphene monolayer and the
chiral fermions are perfectly or almost perfectly tunneling
for normal incidence. The differences emerge for large
incident energy and large value of �U. The Tð’Þ is asym-
metric about � ¼ 0 in a twisted graphene bilayer and the
asymmetry increases with increasing the incident energy
and the height of the barrier (see Fig. S2 of the
Supplemental Material [34]). The most striking result of
the tunneling problem is that the transmission probability
at ’ ¼ 0 depends sensitively on the incident energy and
the height of the barrier, which is quite different from that of
the graphene monolayer and the Bernal graphene bilayer.
To further understand the chiral tunneling in a twisted

graphene bilayer, we calculated the transmission probabil-
ity for normally incident electrons as a function of the
incident energy, as shown in Fig. 3(a). It is interesting to
note that the incident energy can tune the transmission
probability in a twisted graphene bilayer. This unique
behavior is essentially due to the different chirality or
pseudospins of the quasiparticles involved (see Fig. S3 in
the Supplemental Material [34]). For a graphene mono-
layer and a Bernal graphene bilayer, the propagating wave

functions can be written as ð1= ffiffiffi
2

p Þð 1
sei’Þei ~k�~r and ð1= ffiffiffi

2
p Þ�

ð 1
se2i’Þei ~k� ~r, respectively (here s ¼ sgnE). The ei’ and e2i’

can be viewed as the phase difference between the two
components of the ‘‘spinor wave functions,’’ which is
independent of the incident energy. The perfect matching
between an incident electron wave function and the corre-
sponding wave function for a propagating hole inside a
barrier at the barrier interface yields T ¼ 1 in a graphene
monolayer. For a Bernal graphene bilayer, the propagating
electron wave function transforms into an evanescent hole
wave function inside the barrier, resulting in the perfect
reflection for a wide barrier [9]. However, for the case of a
twisted graphene bilayer, the propagating wave function

has the form ð1= ffiffiffi
2

p Þð 1
sqþ

1
Þei ~k�~r and the term qþ1 is energy

dependent (see Supplemental Material [34]). The qþ1 of the
wave function approaches ei’ around the Dirac points and
is a good approximation of e2i’ for the high-energy spec-
trum. Therefore, the transmission probability in a twisted
graphene bilayer is a function of the incident energy
and can be changed from perfect tunneling to complete
reflection, as shown in Fig. 3(a). The normal tunneling
becomes completely forbidden for incident energy higher
than 2EV because the quasiparticles in the twisted gra-
phene bilayer become the pseudospin-1 fermions exactly
for E 
 2EV (see Supplemental Material [34] for details of
the discussion).
We also studied the transmission probability in a twisted

graphene bilayer as a function of the potential barrierUðxÞ,
as shown in Fig. 3(b). Here the height of potential barrier

FIG. 2 (color online). Quantum tunneling in a twisted gra-
phene bilayer for low incident energy. Transmission probability
T through a 100-nm wide barrier as a function of the incident
angle ’ for (a),(c) a twisted graphene bilayer and (b),(d) the
system described by the Hamiltonian ð2v2

F�K=15~t?Þ ~� � ~q. The
remaining parameters are the twist angle of the graphene bilayer
� ¼ 3:89	, t? ¼ 0:12 eV, and EV ¼ 0:15 eV. We only plotted
the transmission of the states in a particular cone; the trans-
mission of the corresponding states in the other cone is related by
mirror symmetry. The angular behavior of Tð’Þ in (b),(d) is
similar to that of a graphene monolayer, and the chiral fermions
are always perfectly tunneling for normal incidence irrespective
of the parameters of the barrier. The Tð’Þ of the twisted
graphene bilayer shows both similarities and differences with
respect to that of the graphene monolayer. For twisted graphene
bilayers, the Tð’Þ is asymmetric about ’ ¼ 0 and the asymme-
try increases with increasing height of the barrier.
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UðxÞ increases from zero, i.e., the value of �U increases
from �E. The chiral electrons in the twisted graphene
bilayer combine the two distinct behaviors of quasipar-
ticles in the graphene monolayer and the Bernal graphene
bilayer. Usually, both the propagation hole state and the
exponential decaying mode coexist inside the potential
barrier, and the weights of the two components can be
tuned by the potential barrier. Therefore, the transmission
probability can be changed from perfect tunneling to par-
tial reflection, or vice versa, as shown in Fig. 3(b).
As the amplitude of the oscillating tunneling is amplified
with the increase of the value of �U, it is expected to see
that the transmission probability can be switched between
T ¼ 1 and T ¼ 0, which corresponds to what the chiral
electron transforms into—either a propagating hole or an
evanescent hole inside the barrier, respectively (see
Supplemental Material [34]).

The middle and lower panels of Fig. 3(b) show a peculiar
behavior of the chiral tunneling: the transmission proba-
bility is zero for a small j�Uj. This peculiar behavior can
be attributed to the failure in creation of an electron-hole
(‘‘positron’’) pair at the barrier interface. The translational
symmetry of the potential barrier conserves the y compo-
nent of wave vector (ky) in the tunneling process. It indi-

cates that the section cut of the energy spectrum for normal
incident electrons should keep ky a constant, as shown in

Fig. 3(c). A gap Eg between electrons and holes is

introduced into the energy serif of quasiparticles with large
incident energies. A small potential barrier, j�Uj< Eg=2,

cannot overcome the energy gap to excite holes in the
classical forbidden area, so the wave vector inside the
potential is imaginary, inhibiting the propagation, as shown
in Fig. 3(b). This behavior is closely connected to Klein’s
original paradox in which a potential step of twice the rest
energy of an electron (the energy ‘‘gap’’ between electrons

and positrons) is required for the observation of chiral
tunneling [35,36]. For the case �E<�U <�Eg=2, the

quasiparticles behave like massive Schrödinger electrons
and their transmission probability oscillates because of the
resonance condition [9].
The periodicity of the oscillations, as shown in Fig. 3(b),

increases with increasing the value of �U. This effect can
be explained with the help of the quantum confinement of
the propagating wave functions inside the barrier.When the
electron wave function perfectly matches thewave function
for a propagating hole, the barrier is transparent. The energy
interval between the nearest states of the propagating hole
wave functions inside the barrier is proportional to the
height of the barrier. As a consequence, the periodicity of
the transmission probability increases with the height of
barrier. To further confirm the above analysis, it is helpful to
consider the same tunneling problem with different width
of the barrier. The energy interval between the nearest states
of the propagating hole wave functions inside the barrier is
expected to increase linearly with the inverse of thewidth of
the barrier D�1. Therefore, the periodicity of the oscilla-
tions should increase linearly withD�1, which is confirmed
explicitly by the result shown in Fig. 4.
The perfect chiral tunneling of a graphene monolayer

inhibits the fabrication of standard semiconductor devices
because field-effect transistors made from graphene mono-
layers remain conducting even when switched off [2]. The
ability to control the transmission of quasiparticles through
a barrier in a twisted graphene bilayer suggests that this
effect can be used as the basis for future graphene device
electronics. Experimentally, a potential barrier can be
easily created by the electric field effect and the parameter
of the barrier is tunable. Therefore, the predicted effect
explained in this Letter is expected to be realized in the
near future.

FIG. 3 (color online). Quantum tunneling in a twisted graphene bilayer for normally incident electrons. (a) Transmission probability
for normally incident electrons as a function of the incident energy. The curves with different colors correspond to different values of
the �U. (b) Transmission probability for normally incident electrons with different incident energy as a function of the value of �U.
Here the height of potential barrier UðxÞ increases from zero; i.e., the value of �U increases from�E. In the middle and lower panels,
the transmission is completely suppressed when j�Uj<Eg=2 [Eg is defined in panel (c)]. For a certain value of �U (here

�U > Eg=2), the amplitude of the oscillations increases with the incident energy. For a fixed incident energy, both the periodicity

and the amplitude of the oscillations increase with the positive value of �U (here �U > Eg=2Þ. (c) The right panel is a density plot of

the energy dispersion of the twisted graphene bilayer around K and K�. The dark dots are the positions of normal incident electrons in
the superlattice Brillouin zone. The energy spectra in the left panel are a section view of band structures through serifs that cross
normal incident modes. The dashed curves represent the electrons that are moving away from the barrier in the perpendicular direction.
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