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We study the quantum phases of fermions with an explicit SUðNÞ-symmetric, Heisenberg-like nearest-

neighbor flavor exchange interaction on the honeycomb lattice at half filling. Employing projective (zero

temperature) quantum Monte Carlo simulations for even values of N, we explore the evolution from a

weak-coupling semimetal into the strong-coupling, insulating regime. Furthermore, we compare our

numerical results to a saddle-point approximation in the large-N limit. From the large-N regime down to

the SU(6) case, the insulating state is found to be a columnar valence bond crystal, with a direct transition

to the semimetal at weak, finite coupling, in agreement with the mean-field result in the large-N limit. At

SU(4) however, the insulator exhibits a subtly different valence bond crystal structure, stabilized by

resonating valence bond plaquettes. In the SU(2) limit, our results support a direct transition between the

semimetal and an antiferromagnetic insulator.

DOI: 10.1103/PhysRevLett.111.066401 PACS numbers: 71.10.Fd, 02.70.Ss, 71.10.Hf, 71.27.+a

In dealing with quantum field theories or quantum sta-
tistical systems, perturbative expansions in the couplings
may become unreliable due to ultraviolet or infrared sin-
gularities. A different route to explore the region of strong
interactions was proposed by ’t Hooft long ago, based on
enlarging the number of internal degrees of freedom of a
theory, eventually leading to a large-N expansion [1]. In
particular, in the context of strongly correlated electronic
systems, large-N theories paved the way towards a con-
trolled theoretical understanding of new states of matter,
such as the flux phase [2,3] or spontaneously dimerized
two-dimensional spin systems [4,5]. Although large-N
theories may have appeared as pertaining to a purely theo-
retical domain, in recent years, novel interest arose in the
physics of correlated fermions with an exact SUðNÞ flavor
exchange symmetry. In fact, such systems can be realized in
ultracold fermionic alkali- and alkaline-earth atoms in opti-
cal lattices [6–12], where significant experimental progress
has been reported [13], as well as in quantum dot arrays [14]
and at special points of coupled spin-orbital systems [15].
SUðNÞ systems represent hot candidates to realize Mott
insulators with fermionic cold atoms in optical lattices
[16–18]. Various theoretical approaches have been
employed to study phases which emerge from an enhanced
SUðNÞ symmetry such as unconventional antiferromagnets
[19–21], generalized valence bond solids [20,22–25], alge-
braic and chiral flavor liquids [2,20,24–31], and others [32],
as well as the quantum phase transitions between them
[7,10,11,16,19–21,26–30,33–39].

Of particular interest in the search for exotic quantum
phases is the physics that arises from SUðNÞ-symmetric

flavor exchange mechanisms in the strong correlation
regime.While the large-N domain can be accessed in terms
of a 1=N expansion, accounting for Gaussian fluctuations
around the mean-field saddle point, the physical realiza-
tions still reside within the regime of low to intermediate
values of N, where some of the possible exotic states have
indeed been identified [19–21,26,27,33,34,36,38]. Hence,
an unbiased assessment of the validity of the large-N results
down to the lowest possible values becomes very important
in light of these recent developments.
Here, we employ numerically exact quantum

Monte Carlo (QMC) simulations to explore the physics
of such fermionic systems. In particular, we consider a
model of fermions with N flavors, coupled via a nearest-
neighbor SUðNÞ-symmetric flavor exchange. The
Hamiltonian that describes this system is given by

H ¼ �t
X

hi;ji;�
ðcyi�cj� þ H:c:Þ

� J

2N

X

hi;ji;�;�
ðcyi�cj�cyj�ci� þ cyj�ci�c

y
i�cj�Þ: (1)

Here, t denotes the tunneling amplitude of the N-flavor

fermions with creation (annihilation) operators cyi� (ci�)
of flavor � ¼ 1; . . . ; N on lattice site i. Furthermore, J
sets the strength of the nearest-neighbor flavor exchange
interaction. We consider the system at half filling Nf=Ns ¼
N=2, where Nf denotes the total number of fermions on a
lattice with Ns sites, for which unbiased quantum
Monte Carlo simulations can be performed without a sign
problem. If the Hilbert space were further constrained to
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exactlyN=2 particles on each lattice site,Hwould reduce to
an exact SUðNÞ-symmetric Heisenberg model HH ¼
J=2N

P
hi;jiSi � Sj, with Si being the vector of the SUðNÞ

spin operators Sai ¼
P

�;�c
y
i�T

a
��ci�, expressed in terms of

the generators Ta, a ¼ 1; . . . ; N2 � 1; of SUðNÞ in the
fundamental representation, with TrðTaTbÞ ¼ �ab=2 [e.g.,
Ta ¼ �a=2 in terms of the Pauli matrices �a for SU(2)].
This would result, e.g., in the largeU limit of amodel that in
addition to H also includes a local Hubbard-U interaction,
which reduces the local particle fluctuations around the
mean value of N=2. In the large-N limit, and considering
only the paramagnetic saddle point, these fluctuations
become irrelevant and the Hubbard-U interaction merely
fixes the average particle number to N=2. The
Hamiltonian in Eq. (1) indeed equals the U ¼ 0 limit of
the Hubbard-Heisenberg Hamiltonian of the seminal
works in Refs. [2–4], and represents an unrestricted
SUðNÞ-symmetric t� J model. It has been considered
previously using QMC simulations on the square lattice,
where an exotic gapless spin liquid was obtained forN ¼ 4
flavors [27]. In the following, we consider the case of the
honeycomb lattice, motivated also by recent studies for the
SU(2) Hubbard model [40], and are in particular interested
in the response of the weak-coupling SUðNÞ semimetal
(SM) to an explicit SUðNÞ-symmetric flavor exchange in-
teraction J.

Large-N.—Before presenting QMC results, we consider
the mean-field decoupling ofH in terms of the bond mean-

fields �ij ¼ j�ijjei�ij ¼ hP�c
y
i�cj�i=N, which becomes

exact in the large-N limit. The �ij carry a phase �ij, and

j�ijj2 relates the bond strength hSi � Sji. We numerically

solve the mean-field equations self-consistently for a six-
site unit cell (with nine bonds), which retains the full lattice
symmetry (cf. the left inset of Fig. 1). This leads to the
following phase diagram: at large t=J, the kinetic energy
dominates and all the�ij are equal and real; thus, the system

in this region is a fluxless SM. Below a critical value near
t=J ¼ 0:21, the system undergoes a continuous quantum
phase transition into a columnar valence bond solid (cVBS)
phase with a Kekule pattern [5,41], illustrated in the right
inset of Fig. 1. For comparison, we note that on the
square lattice, the noninteracting Fermi sea is unstable,
and in the large-N limit d-density wave states occur imme-
diately at weak coupling, while a valence bond solid
(VBS) with box dimerization emerges at large exchange
coupling [27].

QMC method.—To explore the phase diagram beyond
the large-N limit, and to assess the stability range of
the large-N results, we employ a SUðNÞ-generalized
formulation of the projector QMC simulations
[27,42,43], which allows for the numerically exact evalu-
ation of ground state properties for all even values

of N. Observables are obtained as h�0jOj�0i ¼
lim�!1h�Tje��H=2Oe��H=2j�Ti=h�Tje��Hj�Ti. We
use a trial wave function j�Ti ¼

Q
�j�Ti�, where j�Ti�

is the ground state of the single particle Hamiltonian

H0
� ¼ �t

P
hi;jic

y
i�cj� expðð2�i=�0Þ

Rrj
ri d‘ �AÞ þ H:c: in

the flavor � Hilbert subspace, where �0 ¼ he=c denotes
the flux quantum, and ri the position of lattice site i. The flux
�=�0 ¼ 10�4 is chosen sufficiently small to lift the ground
state degeneracy in j�Ti. We performed QMC simulations
on finite systems of linear extentL andNs ¼ 2L2 sites, with
periodic boundary conditions. Projection parameters
�t ¼ 30 and an imaginary time discretization of ��t ¼
0:05were found sufficient to obtain converged ground-state
quantities within statistical uncertainty. From a fit of the

imaginary-time displaced Green’s function [44] Gðq; �Þ ¼
hð1=2NÞPs;�c

y
qs�ð�Þcqs�ð0Þi to its long-time behavior

lim�!1Gðq; �Þ / e���spðqÞ, the single-particle gap �sp ¼
�spðKÞ can be extracted without an analytical continuation.
Here, the momentum q is defined with respect to the coor-
dinates of the two-site unit cells of the honeycomb lattice
that form a triangular lattice, K denotes a corner of the
hexagonal Brillouin zone (where the Dirac points of the SM
reside), and s ¼ A, B corresponds to the site of the unit cell
that belongs to sublattice A and B, respectively. Similarly,
we obtain the spin gap��ð�Þ from the time-displaced spin-
spin correlation function in the antiferromagnetic (AFM)
sector, SAFMð�; �Þ ¼ ð1=NsÞ

P
i;j	i	jhSið�Þ � Sjð0Þi, where

	i ¼ �1 if site i belongs to sublattice A (B). The equal
time value SAFMð�Þ ¼ SAFMð�; � ¼ 0Þ provides the
structure factor for long-range AFM order on this bipartite
lattice. In order to determine the dimerization pattern
of the VBS phase stabilized in the large-N analysis,
we measure the SUðNÞ dimer correlation function

FIG. 1 (color online). Ground state phase diagram of fermions
with SUðNÞ-symmetric flavor exchange on the honeycomb lat-
tice. Crosses denote parameters at which QMC simulations have
been carried out. For all considered (even) N the system under-
goes a quantum phase transition from a semimetal (SM) to an
insulator. For N � 6 the insulating state is a columnar valence
bond solid (cVBS), while at N ¼ 4 it is a valence bond solid with
resonating valence bond plaquettes (pVBS); both are depicted in
the right inset. At N ¼ 2 an antiferromagnetic insulator (AFM)
appears. The left inset shows the lattice structure with the six-
sites unit cell employed in the large-N calculations.
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Dij;kl ¼ hhðSi � SjÞðSk � SlÞii, where hhO1;O2ii¼ hO1O2i�
hO1ihO2i denotes a cumulant. From the Fourier transforma-
tion of Dij;kl for a set of parallel bonds hiji, hkli, we
furthermore obtain a corresponding structure factor
SdimðKÞ. Similarly, we define a structure factor SkinðKÞ
from the kinetic energy correlators hhcyi cj þ cyj ci; c

y
k cl þ

cyl ckii among a set of parallel bonds of the honeycomb

lattice.
QMC results.—As shown in the phase diagram in Fig. 1,

our findings for N � 4 essentially agree with the scenario
obtained from the large-N analysis, with the critical ratio
t=J of the SM-VBS transition slightly increasing with 1=N.
For example, from the data at J=t ¼ 6 for N ¼ 10, shown
in Fig. 2, a robust finite single-particle�spðKÞ and spin-gap
��ð�Þ is extracted. The order parameters derived from the
characteristic VBS structure factor SdimðKÞ, as well as
from the kinetic energy–based structure factor SkinðKÞ
extrapolate to a finite value in the thermodynamic limit
(TDL), as shown in the inset of Fig. 2, while the AFM order
parameter SAFM=Ns vanishes in the TDL, as expected for
the cVBS phase. Figure 3 shows the corresponding dimer
correlations in real space on a L ¼ 6 lattice. The robust
characteristic Kekule pattern (cf. the right inset in Fig. 1)
generates a mass term without breaking the sublattice
symmetry. Furthermore translation symmetry of the origi-
nal lattice is broken: the unit cell contains six orbitals, and
forms a triangular lattice.

Decreasing N down to 6, the cVBS order is increasingly
weakened but remains persistent; we observed similar
finite size scaling behavior of observables at SU(6) as those
at SU(10). The situation changes at SU(4), as shown in
Fig. 4, where we observe an unusual finite size scaling
behavior of SdimðKÞ (main panel) and SkinðKÞ (inset).
While the extrapolation still yields long-range dimer cor-
relations at strong coupling (J=t * 4:3) in the TDL, it hints

at a possible different VBS pattern than the cVBS found at
higher N.
While the dimer correlation pattern (e.g., Fig. 3) allows

us to identify VBS order of a certain momentum, it cannot
distinguish between VBS states of different structures,
such as cVBS and plaquette VBS (pVBS) states, as they
relate to the same wave vector K. At SU(4), fluctuations
could possibly be sufficiently strong to soften the cVBS
order by forming resonating valence bond plaquettes—the
antisymmetric combination of the two singlet coverings

around a hexagonal plaquette—which order into a
ffiffiffi
3

p �ffiffiffi
3

p
pVBS, illustrated in the right inset of Fig. 1.
In order to unveil a possible change in the nature of the

VBS, we employ a histogram technique [45]: we track the
contributions to the dimer correlations originating from
the three different bond types defined by red, green, and
blues bonds in Fig. 5. Histograms with a dominant weight
along the three main bond directions indicate cVBS order.
Indeed, the data in Fig. 5 for both SU(10) and SU(6) exhibit
peaks at the axial corners, representing the Kekule pattern.
In the TDL one of the three peaks for the equivalent
realizations will prevail, as the translational symmetry of
the lattice is spontaneously broken. In case two bond types
contribute equally well, and resonating valence bond
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FIG. 2 (color online). N ¼ 10. Finite size extrapolation of the
AFM structure factor SAFMð�Þ, the spin gap ��ð�Þ, and the
single-particle gap �spðKÞ in the VBS for SU(10) at J=t ¼ 6:0.

The inset shows the finite size extrapolation of the structure
factors SdimðKÞ and SkinðKÞ.

FIG. 3 (color online). N ¼ 10. Real-space dimer correlations
Dij;kl on a L ¼ 6 lattice for SU(10) at J=t ¼ 6:0, with the striped

reference bond. Dij;kl is indicated by colors and the line thick-

ness in addition to the explicit values given for each bond.
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FIG. 4 (color online). N ¼ 4. Finite size scaling of the dimer
and kinetic structure factors SdimðKÞ and SkinðKÞ at SU(4).
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plaquettes are formed, the histogram shows predominant
weight at the midpoint between two of the major bond
directions. Indeed, this can be readily identified in the
histogram for SU(4) in Fig. 5, such that the transition
from the cVBS at SU(6) to the pVBS at SU(4) can be
unambiguously identified. Interestingly, while both VBS
orders break the same lattice symmetry they can be dis-
tinguished by the dimer histogram [38,46].

While we thus find the large-N scenario to describe well
the region N � 6, we observe its partial breakdown at
N ¼ 4, where the structure of the VBS changes.
Furthermore, in the SU(2) case, the ground state becomes
a Néel antiferromagnet for ratios J=t � 2:1. This can be
seen from the finite size data of the staggered magnetiza-

tion msðLÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SAFMð�Þ

p
=L in the left panel of Fig. 6. With

the available system sizes, the data are consistent with a
direct SM-AFM transition, as the opening of the single-
particle gap and the onset of antiferromagnetism coincide.
In fact, as seen from the right panel of Fig. 6, a finite single-
particle gap in the TDL opens beyond J=t � 2:1. In con-
trast to the cases of larger N, we do not observe VBS
formation at SU(2) as seen from the rapid finite-size down-
scaling of the corresponding structure factor SdimðKÞ
shown in the inset of Fig. 6 in comparison with Figs. 2
and 5. At N ¼ 2, one would expect the transition between
the SM and AFM to be similar to that for the �-flux

Hubbard model and honeycomb lattice [40,47]. Larger
system sizes and more precise simulations will be required
to clarify this point.
We explored the phase diagram of fermions with a

SUðNÞ-symmetric flavor exchange interaction on the hon-
eycomb lattice at half filling. Our quantum Monte Carlo
simulations confirm that the scenario from the large-N
approach holds down to N ¼ 6. This result is encouraging
for the general large-N approach, in light of its application
to cold gases of alkaline earth metals, where N can indeed
take on large values (e.g., N ¼ 6 for 173Y and N ¼ 10 for
87Sr). In the context of the present flavor exchange model,
where fluctuations are enhanced by the charge dynamics,
the strong coupling region atN ¼ 2 and 4 however deviates
from the large-N limit. Based on quantum Monte Carlo
simulations, we exhibited the presence of resonating va-
lence bond plaquettes at SU(4), separating the antiferro-
magnetic strong coupling phase at N ¼ 2 from the Kekule
ordered region forN � 6. In would be interesting for future
research to address the nature of the quantum phase tran-
sitions that separate these three different large-J regions
when varying the flavor exchange symmetry N, e.g.,
within a feasible continuous-N generalization of the model.
This would offer the prospects of a potential candidate
for a deconfined quantum phase transition [48] between
the AFM and pVBS as well as the possibility to study the
proliferation of vortices in the Kekule structure which trig-
ger a phase transition from cVBS to the pVBS phase.
We thank L. Balents, M. Hermele, A.M. Läuchli, and

S. Sachdev for helpful comments and discussions. This
research was supported in part by EPSCoR Cooperative
Agreement EPS-1003897 (Z.Y.M.), DFG AS102/4-3
(F. F. A.), DFG WE 3649/3-1 (S.W.), and DFG FOR1807
(F. F. A., S.W.). Furthermore, we acknowledge the JSC
Jülich, JARA-HPC, the HLRS Stuttgart, and the
LRZ-Munich for the allocation of CPU time.

FIG. 5 (color online). Histograms of the dimer density along
three bond types (illustrated in the top left panel), which corre-
spond to three realizations of the same columnar VBS.
Predominant weight at the corners in the phase space represent
the columnar states as seen at N ¼ 10 and 6. A resonating
plaquette is formed on two different bond types and is signaled
by weight at the midpoint between two bond directions as
realized at SU(4). All histograms have been rescaled in order
to ease the identification of their characteristic distributions.
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FIG. 6 (color online). N ¼ 2. Staggered magnetization ms ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SAFMð�Þ

p
=L and single-particle gap �spðKÞ as functions of the

system size for SU(2) and different ratios J=t. The inset shows
the finite size scaling of the structure factor SdimðKÞ inside the
range 2:1 & J=t & 2:5.
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[38] P. Corboz, M. Lajkó, K. Penc, F. Mila, and A.M. Läuchli,
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