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Using numerical simulation of a 2D Lennard-Jones system, we study the crossover from shear thinning

to Newtonian flow. We find that the short-time elastic response of our system essentially does not change

through this crossover, and show that, in the Newtonian regime, thermal activation triggers shear

transformations, i.e., local irreversible shear events that produce Eshelby (long-ranged, anisotropic)

deformation fields as previously seen in low-T glasses. Quite surprisingly, these Eshelby fields are found

to persist much beyond the �-relaxation time, and shear thinning to coincide with the emergence of

correlations between shear relaxation centers.
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It is now well documented that, in glassy solids, plastic
deformation results from the accumulation of ‘‘shear
transformations’’ occurring within ‘‘zones’’ a few particles
wide [1]. These rearrangements give rise, in the surround-
ing (isotropic) elastic medium, to ‘‘Eshelby’’ stress
changes [2], which are anisotropic—with cosð4�Þ symme-
try in 2D—by virtue of the tensorial character of the shear
sources. Eshelby fields bias the occurrence probabilities of
plastic events depending on their locations relative to prior
ones and, at low temperature, when strain sources are
predominantly oriented (in a tensorial sense) along exter-
nal deformation, promote avalanche behavior, i.e., the
organization of plastic events along bandlike patterns
[3,4]. Studies of stress [5] and diffusion [6] in systems
sheared at finite temperature (T) have evidenced that ava-
lanche dynamics remain at work up to T & 0:75Tg, with Tg

the glass transition temperature.
Knowledge, however, is still fragmentary as to how

deformation mechanisms change around Tg. The response

of a supercooled liquid is Newtonian (steady shear stress
� / strain rate _�), at high T and low _�; it progressively
becomes shear thinning (� grows sublinearly in _�) with
decreasing T or increasing _� [7]. Furukawa et al. [8] have
found the spatial correlation of the displacement field
to be anisotropic in the shear-thinning regime but not in
Newtonian flows. Since the low-T flips create anisotropic
deformation fields, we must ask whether this observation
signals a change in the very nature of elementary relaxation
events or a change of correlation properties between them.
This question is crucial to any theoretical approach to the
rheology of supercooled liquids.

To characterize flow events at both high and low tem-
peratures, we will focus on the shear strain field and its
spatial autocorrelation, an approach apparent to recent
studies of avalanche dynamics in numerical simulations
[9] and of the transition to shear banding in experiments
[10]. Borrowing from recent advances in diffuse wave
acoustics [11], we show that the autocorrelation of the

short-time (nonaffine) strain field captures the dynamic
elastic Green function of the material; this enables us to
show that the longitudinal and transverse sound speeds
are unchanged through the shear-thinning-to-Newtonian
crossover. Using direct measurements of elastic moduli
in inherent states (ISs) we then find that the high frequency
elastic properties of our system are essentially T indepen-
dent and very weakly _� dependent up into the Newtonian
regime. From long-time strain autocorrelation data we next
show evidence that, in the Newtonian regime, thermal
fluctuations trigger irreversible shear transformations
giving rise to (anisotropic) Eshelby fields, like in low-T
glasses; quite strikingly, these fields are found to persist
much beyond the � relaxation time.
Our work thus substantiates the idea that supercooled

liquids are ‘‘solids that flow’’ [12], and meanwhile reveals
two major surprises: (i) Eshelby strains are observed
around and above Tg, in the Newtonian regime—when

they are usually thought to be peculiar to low-T, plastic,
deformation; (ii) correlations between shear relaxation
centers emerge as soon as the system enters, for T decreas-
ing, into the shear-thinning regime. The Newtonian-to-
shear-thinning crossover thus appears to be controlled by
the competition between the flow events needed to relax
shear and randomly oriented shear events triggered by
thermal activation.
Simulations are performed using the same 2D binary

Lennard-Jones mixture as in [4–6]. From athermal simu-
lations [4] the bulk and shear moduli are K ’ 85, � ’ 25.
The mass density � ’ 1:77, when p- and s-wave speeds (in

2D) cl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðK þ�Þ=�p ’ 7:9 and ct ¼

ffiffiffiffiffiffiffiffiffiffi
�=�

p ’ 3:8. (We
use throughout reduced Lennard-Jones units.) From the
decay of the incoherent scattering function, we find
�� ¼ 104 at T ¼ Tg � 0:27. Simple shear is implemented

using Lees-Edwards boundary conditions with flow lines
along the x axis. Only steady state data are considered for
each parameter set (linear system size L, _�, and T). Plots of
viscosity � ¼ �= _� (with � the steady shear stress) versus
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_� are presented in Fig. 1 for different T’s, using L ¼ 40, a
size beyond which � is size independent [5]. We find the
usual crossover from a Newtonian plateau at low _� and
high T to shear thinning. For T � 0:2, plastic flow is
known to be governed by the same mechanisms—zone
flips and avalanche behavior—as athermal systems [5,6].

To construct a coarse-grained nonaffine strain field,
	ðr; t; tþ �tÞ, between times t and tþ �t, we follow the

method proposed in [13], using the normalized coarse-
graining function: 
ðrÞ / 1� 2ðr=rcÞ4 þ ðr=rcÞ8 for
r < rc, 
ðrÞ ¼ 0 otherwise [14]. A typical map of the
shear strain 	xy is shown on Fig. 1 (right) for rc ¼ 2:

regions where inelastic events have occurred exhibit large
strain values, which contrast against the background of
small elastic fluctuations. We have systematically used
different coarse-graining scales rc ¼ 1, 2, and 4 to check
for consistency, and found similar conclusions; in the
remainder of this Letter, we take rc ¼ 1, which provides
better statistics.

In Fig. 2 plots of the space and ensemble average h	2xyi
versus�t present the usual sequence of convective, caging,
and diffusive regimes. For all of our T’s and _�’s, h	2xyi=T
[see Fig. 2(a)] collapse at short times: strain fluctuations

are then / T, i.e., result primarily from fast thermal vibra-
tions around ISs. At long times, h	2xyi=�t reaches a

plateau, which defines a diffusion coefficient Dxy ¼
lim�t!1h	2xyi=�t. Plots of Dxy versus T for different _�

[Fig. 2(c)] show the same features as a similar display of
transverse particle diffusion data [6]: (i) for T * Tg,

DxyðT; _�Þ matches at low _�’s its value Deq
xyðTÞ in the

unsheared equilibrated supercooled liquid (thick solid
line); (ii) DxyðT; _�Þ deviates from Deq

xyðTÞ at low T, high

_�, thus marking the entry in a regimewhere strain diffusion
is primarily due to plastic events. The crossover between
the ‘‘temperature-controlled’’ and ‘‘strain-controlled’’
regimes can be roughly located by identifying where the
DxyðT; _�Þ curves merge onto the equilibrium line Deq

xyðTÞ.
The resulting _�cðTÞ values (not shown) are consistent with
those identified in [6] from diffusion data. In the viscosity
plot of Fig. 1 (left), we place bullets at the ½ _�cðTÞ;
�ð _�cðTÞÞ� points to show that they also mark the merging
of �ð _�Þ into the low- _� Newtonian plateaus.
We concentrate in the following, on the spatial autocor-

relation of the accumulated strain field: C���
ðR; �tÞ ¼
h	��ðr; t; tþ�tÞ	�
ðrþ R; t; tþ�tÞi, and start by con-

sidering its short-time dynamics. For this purpose, we
adapt in [14] an argument by Lobkis and Weaver who
establish a fluctuation theorem for the dynamic response
of elastic systems [11]. Namely, we show that if particle
motion subsumes to harmonic thermal vibrations around
ISs, CðR; �tÞ ¼ TG�ðR; �tÞ, with G�ðR; tÞ the ensemble-

averaged dynamic strain-strain Green function. 2D plots of
Cxyxy (as of now, abbreviated as Cxy) at short times are

displayed in Fig. 3: as per above, they reveal the strain
response to a stress dipole [15] applied at the origin at
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FIG. 1 (color online). Left: Steady flow viscosity � ¼ �= _�
versus _� for different T’s. Bullets: ½ _�cðTÞ; �ð _�cðTÞÞ� with _�cðTÞ
from [6]; thick lines: KIS and �IS (see text). Right: A typical
strain map, using L ¼ 160, T ¼ 0:35, _� ¼ 10�4, �t ¼ 100,
rc ¼ 2.
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FIG. 2. Left: h	2xyi=T (a) and h	2xyi=�t (b) versus �t, for
T ¼ 0:05, 0.1, 0.2, 0.3, 0.35, 0.4, and _� ¼ 4� 10�5.
(c) Symbols: Dxy versus T for _� ¼ 10�5, 4� 10�5, 10�4,

4� 10�4, and both L ¼ 80 (circles) and 160 (triangles);
thick solid line: Deq

xy in the equilibrated supercooled liquid
with L ¼ 80.
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FIG. 3 (color online). Top: 104CxyðR; �tÞ=T for R 2
½�L=2; L=2�2 (L ¼ 160), T ¼ 0:3, _� ¼ 10�5, rc ¼ 1, times
�t ¼ 5, 10, and 15 (from left to right). White semicircles have
radii �tct (solid) and �tcl (dashed). Bottom: Cxyðxex; �tÞ=T
versus x at �t ¼ 5 and 10 (the latter shifted upwards by
5� 10�5) for _� ¼ 10�5, T ¼ 0:05, 0.1, 0.2, and 0.3.
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t > 0, and accordingly show two wave fronts propagating
away from the origin at (roughly) the velocities cl and ct,
which are estimated using athermal simulation data [16].
Quite remarkably, the front velocities match their T ¼ 0
estimates, even though we use here T ¼ 0:3 and _� ¼ 10�5,
which sets our system well inside the Newtonian regime.
Cuts of Cxy along the x axis, Fig. 3 (bottom) [17], empha-

size that the transverse sound speed is insensitive to T over
all of our temperature range, which extends beyond Tg.

Beyond T ¼ 0:3, the caging regime is too short to probe
elasticity using this method. We have thus also measured
the elastic moduli of ISs (using [18]) sampled from steady
flow configurations. KIS and �IS are reported on the vis-
cosity plot, Fig. 1 (left), for all our _�’s and T’s up to 0.4.
The near constancy of elastic moduli sharply contrasts with
the order-of-magnitude changes in viscosity [19]. We thus
find that, through the shear-thinning-to-Newtonian cross-
over, the short-time elastic properties of our sheared sys-
tems are only marginally sensitive to temperature and
strain rate.

If the elastic properties of the IS are similar on either
side of the crossover, then should not the relaxation events
occurring in the liquid couple with the elastic matrix, like
low-T flips, and emit acoustic signals carrying, at least for
short times, Eshelby strain fluctuations? What kind of
perturbation are these events thus creating in the liquid?
To address these crucial questions, we now examine the
nonaffine strain field accumulated over long times, in the
diffusive regime of strain fluctuations.

Beyond the caging regime, 	xyðt; tþ�tÞ compounds

thermal strain fluctuations with the accumulating plastic

deformation. Denoting 	plxyðt; tþ �tÞ the strain associated
with the change of IS between t and tþ �t and 	elxyðtÞ that
associated with the departure of each instantaneous con-

figuration from its IS, we have 	xyðt; tþ�tÞ ¼ �	elxyðtÞ þ
	
pl
xyðt; tþ�tÞ þ 	elxyðtþ �tÞ. The short-time autocorrela-

tion of the strain field, which we studied above, is just
the autocorrelation of 	elxyðtþ�tÞ � 	elxyðtÞ. Moreover,

because vibration modes have uncorrelated phases, the
autocorrelation of any field 	elxyðtÞ alone is zero [11,14].

At long times, hence, as hopping events accumulate, the
autocorrelation of 	elxyðtþ �tÞ � 	elxyðtÞ must vanish and

then only remains in CxyðR; �tÞ the contribution of 	
pl
xy.

Before proceeding, our discussion has to address one
technical difficulty: as shown in Fig. 4(a), typical cuts of
CxyðR; �tÞ, at low temperature, present a strong x, y asym-

metry. Clearly, this is a finite size effect arising from the
Lees-Edwards boundary conditions [14]. As system size
increases, however, the Cxy values along both the x and y

axes noticeably collapse on the same master curve; in
particular, we see that Cxy cuts along x, for L ¼ 160,

provide a meaningful approximation for the large L auto-
correlation data, up to significant distances, ’ 40. We focus
on such cuts in the next plots.

Correlation data for _� ¼ 10�4, in the diffusive regime of
h	2xyi (namely, for �t ¼ 2� 103), are presented both as

cuts in Figs. 4(b) and 4(c) and as 2D plots in Fig. 5. As
discussed above, the conspicuous x, y asymmetry on the
low-T 2D plots is a finite size effect. Figure 4(b) shows that
the correlation tails decrease slowly in the regime where
avalanche behavior is expected to be at work, up to
T ¼ 0:2 [5,6], and more sharply between T ¼ 0:2 and
0.35. The decay of correlations with increasing T is accom-
panied, on 2D plots, by a progressive emergence of the
cosð4�Þ symmetry. A decrease of the correlation tail can
still be seen between T ¼ 0:35 and T ¼ 0:4 in Fig. 4(c). At
this latter temperature, the correlation function present
both a 1=R2 decay and cosð4�Þ symmetry.
It is striking here to find nonvanishing anisotropic cor-

relations of the strain field at T ¼ 0:4, a very high tem-
perature, much above Tg. We observe the same feature for

all our ( _�, T)’s in the Newtonian regime: namely, Cxy /
cosð4�Þ=R2, the same analytic form as the far-field strain
(or stress) produced by an Eshelby event [21]. To interpret
this observation, let us write the strain accumulated
between t and tþ �t, 	xy ¼ P

e	
e
xy, as the sum of the

contributions of individual events, and note that
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FIG. 4 (color online). (a) Cxy versus distance R ¼ x or y along
both the x and y axes for _� ¼ 10�4, �t ¼ 100, T ¼ 0:1, L ¼ 40,
80, 160, and 320. Panels (b)–(d) present only cuts along x:
(b) _� ¼ 10�4, �t ¼ 2� 103, L ¼ 160, T ¼ 0:05, 0.1, 0.2, 0.3,
0.35; (c) Cxy=CxyðR ¼ 1Þ, same parameters, but T ¼ 0:35 and

0.4; (d) Cxy=Cxyð0Þ, for _� ¼ 10�5, T ¼ 0:35, and �� ¼ 1%,

2%, 5%, 10%, and 20%, i.e., time intervals �t ¼ 103, 2� 103,
5� 103, 104, and 2� 104. Thin dashed lines: slope �2.

FIG. 5 (color online). 2D plots of 102CxyðRÞ at �t ¼ 2� 103,
_� ¼ 10�4, T ¼ 0:2, 0.3, 0.35, 0.4 (from left to right).
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CxyðR; �tÞ=Cxyð0;�tÞ ¼ h	exyðrÞ	exyðrþ RÞi=hð	exyÞ2i when
events are independent. Decomposing each 	exy into the

large but localized contribution of the relaxing center, and
the order-of-magnitude smaller, spatially extended, elastic
strain field, 	exy¼	corexy þ	fieldxy , we now see that CxyðR;�tÞ=
Cxyð0;�tÞ / h	corexy ðrÞ	corexy ðrþRÞiþ2h	corexy ðrÞ	fieldxy ðrþRÞi.
The first term on the right-hand side captures details of
particle motion inside relaxation centers; it must hence
quickly vanish with distance and become negligible be-
yond length scales approximately a zone size: only the
second term remains in the far field and hence
CxyðR; �tÞ=Cxyð0;�tÞ captures the average strain field

produced by an irreversible event [22].
On this basis, we interpret the cosð4�Þ=R2 form of the

correlation function in the Newtonian regime as signaling
that strain fluctuations result from the accumulation of
independent Eshelby events. Since we learned from strain
diffusion that, in this regime, strain fluctuations are also
identical to those of the equilibrated supercooled liquid, we
now conclude that in supercooled liquids thermal fluctua-
tions activate independent shear transformations, i.e., local
shear events, which couple elastically with the embedding
medium and give rise to Eshelby strains.

The idea that relaxation events produce Eshelby fields in
supercooled liquids seems quite contrary to current expec-
tations. So, to further assess the degree of persistence of
these long-ranged elastic effects, we provide, in Fig. 4(d),
CxyðR; �tÞ=Cxyð0;�tÞ data for T ¼ 0:35 and _� ¼ 10�5, in

the Newtonian flow, at increasing time intervals, up to
�t ¼ 2� 104. This latter value is much larger than our
estimate of ��ð0:35Þ � 100 [6] based on the usual analysis
of the intermediate scattering function; over this time
interval, h	2xyð�tÞi increases 103-fold from the caging pla-

teau. The curve collapse entails that the Eshelby strains
created in the supercooled liquid by irreversible events are
not erased by later ones but persist and accumulate diffu-
sively at time scales much beyond ��. The observation of
lasting Eshelby fields in a Newtonian liquid is the primary
outcome of our work.

We now know that the Newtonian flow proceeds by the
accumulation of Eshelby events which have similar fea-
tures to the low-T plastic ones. Moreover, we observed in
Fig. 5 that the signature of avalanche behavior at low T is
not the x, y asymmetry (which is just a finite size effect): it
is instead the imbalance between positive and negative
lobes, which reflects the preferential alignment of shear
events along both the x and y axes. With this at hand, let
us now come back to the comparison of T ¼ 0:35 and
T ¼ 0:4, _� ¼ 10�4, data: these two temperatures were
chosen because [see Fig. 1 (left)] the system lies in the
middle of the crossover at _� ¼ 10�4, T ¼ 0:35, and inside
the Newtonian regime for T ¼ 0:4. The slower than 1=R2

decay of Cxy at T ¼ 0:35 associated with the slight

imbalance between � lobes on the corresponding 2D plot
now shows that the entry (with decreasing T) inside the

shear-thinning regime is associated with the emergence of
correlations between shear relaxation events. This is the
second important result of our work.
The following picture is now unfolding. Measurements

of sound propagation and of elastic moduli in IS show that
the elastic properties of sheared supercooled liquids, i.e.,
the local curvatures of the potential energy landscape, are
essentially statistically unchanged when crossing over
from the glassy to the shear thinning and up into the
Newtonian response, a result which extends to sheared
systems recent findings in equilibrated ones [20]. At the
time scale relevant to the unfolding of shear transforma-
tions, high- and low-T systems are hence statistically
identical. The first important outcome of our work is the
direct evidence that in supercooled liquids thermal activa-
tion triggers local shear events which create long-ranged,
and lasting, Eshelby fields. The second, that the emergence
of correlations between shear relaxation events with
decreasing T coincides with the Newtonian to shear-
thinning crossover. Clearly, these correlations will have
to be taken into account in future theories of shear-thinning
behavior.
The striking persistence of Eshelby fields entails that the

strain changes due to irreversible events simply add up, up
to very large times. Of course, this result is here obtained
using a 2D Lennard-Jones system with periodic boundary
conditions, and up to moderate deformations that permit a
small strain (geometrically linear) analysis. Pending future
studies, possibly in 3D, using complex loading paths that
can probe finite deformation effects, we tentatively inter-
pret our observation as follows. In undercooled liquids,
where the Newtonian-to-shear-thinning crossover is found,
irreversible events are expected to be local [23], i.e., to
involve a change of reference state in small regions. As
explained by Eshelby, such changes amount to introducing
localized forces acting on the underlying elastic structure
(inherent states). As time proceeds, the total deformation is
hence that due to the accumulation of all these force
sources. Additivity follows if these events are unlikely to
unfold at the same time and place—a not so stringent
condition which is expected to be fullfilled at least in
supercooled liquids, where irreversible processes are
activated.
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(Birkhäuser, Boston, 2001), 1st ed.

[16] Note that, in an elastic continuum, the dynamic response
to a pure shear source presents only the transverse front:
our observation of both fronts entails that scattering on the
elastic fluctuations by structural disorder couples shear
and longitudinal waves.

[17] The broadening of the fronts is characteristic of wave
propagation in 2D, but arises also partly from scattering.

[18] A. Lemaı̂tre and C. Maloney, J. Stat. Phys. 123, 415
(2006).

[19] Over the studied parameter range, the relative changes
of KIS are & 2%; at fixed T, �IS decreases some-
what (�10%) with _�; at any fixed _�, it increases
very slightly (� 5%) with T, a result consistent with
Ref. [20].

[20] H. Yoshino and M. Mezard, Phys. Rev. Lett. 105, 015504
(2010); F. Puosi and D. Leporini, J. Chem. Phys. 136,
041104 (2012).

[21] J. D. Eshelby, Proc. R. Soc. A 241, 376 (1957).
[22] Note that opposite sources (e.g., 	corexy ¼ �	0 in some

small zone) give rise (typically) to opposite fields
�	fieldxy : their contributions to h	corexy ðrÞ	fieldxy ðrþ RÞi hence
add up. This is why the strain-strain correlation picks up
the average response to a (positive) shear source even
when, at high T, shear events are triggered by thermal
activation with all possible orientations.

[23] A. Widmer-Cooper and P. Harrowell, Phys. Rev. Lett. 96,
185701 (2006).

PRL 111, 066001 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

9 AUGUST 2013

066001-5

http://dx.doi.org/10.1103/PhysRevLett.93.016001
http://dx.doi.org/10.1103/PhysRevLett.93.016001
http://dx.doi.org/10.1103/PhysRevLett.103.065501
http://dx.doi.org/10.1103/PhysRevLett.103.065501
http://dx.doi.org/10.1103/PhysRevLett.105.266001
http://dx.doi.org/10.1103/PhysRevLett.105.266001
http://dx.doi.org/10.1103/PhysRevE.84.011501
http://dx.doi.org/10.1103/PhysRevE.84.011501
http://dx.doi.org/10.1063/1.1859285
http://dx.doi.org/10.1063/1.1859285
http://dx.doi.org/10.1103/PhysRevLett.102.016001
http://dx.doi.org/10.1103/PhysRevLett.102.016001
http://dx.doi.org/10.1088/0953-8984/20/24/244128
http://dx.doi.org/10.1088/0953-8984/20/24/244128
http://dx.doi.org/10.1103/PhysRevLett.107.198303
http://dx.doi.org/10.1121/1.1417528
http://dx.doi.org/10.1121/1.1417528
http://dx.doi.org/10.1103/RevModPhys.78.953
http://dx.doi.org/10.1016/j.jnoncrysol.2006.02.173
http://dx.doi.org/10.1016/j.jnoncrysol.2006.02.173
http://dx.doi.org/10.1140/epje/i2002-10073-5
http://dx.doi.org/10.1140/epje/i2002-10073-5
http://link.aps.org/supplemental/10.1103/PhysRevLett.111.066001
http://link.aps.org/supplemental/10.1103/PhysRevLett.111.066001
http://dx.doi.org/10.1007/s10955-005-9015-5
http://dx.doi.org/10.1007/s10955-005-9015-5
http://dx.doi.org/10.1103/PhysRevLett.105.015504
http://dx.doi.org/10.1103/PhysRevLett.105.015504
http://dx.doi.org/10.1063/1.3681291
http://dx.doi.org/10.1063/1.3681291
http://dx.doi.org/10.1098/rspa.1957.0133
http://dx.doi.org/10.1103/PhysRevLett.96.185701
http://dx.doi.org/10.1103/PhysRevLett.96.185701

